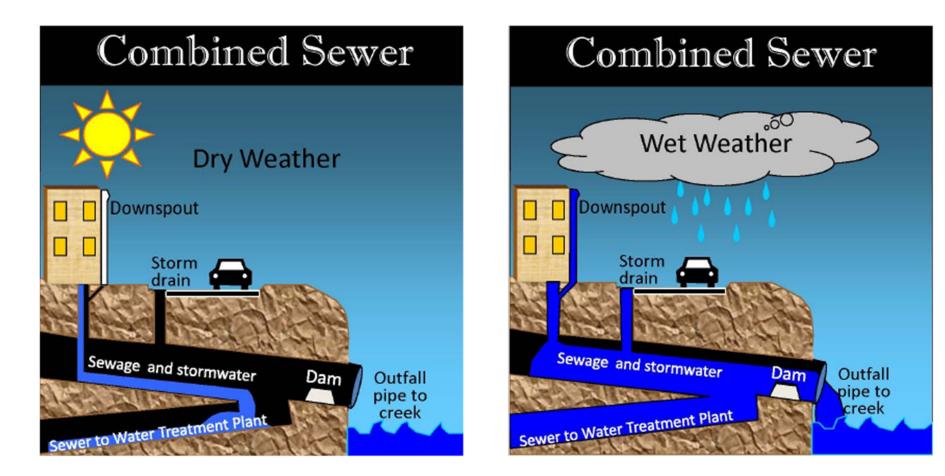



## DWSD Sewer System CPC Urban Flooding Discussion

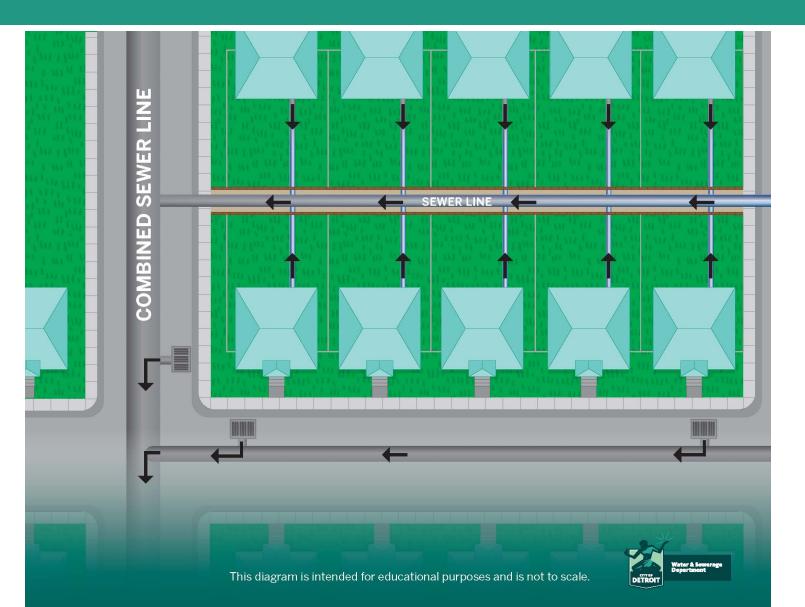
6550

September 9, 2021


## **3,000 Miles of Sewer Pipes Built Over 150 Years**






## **Detroit has a Combined Sewer System**

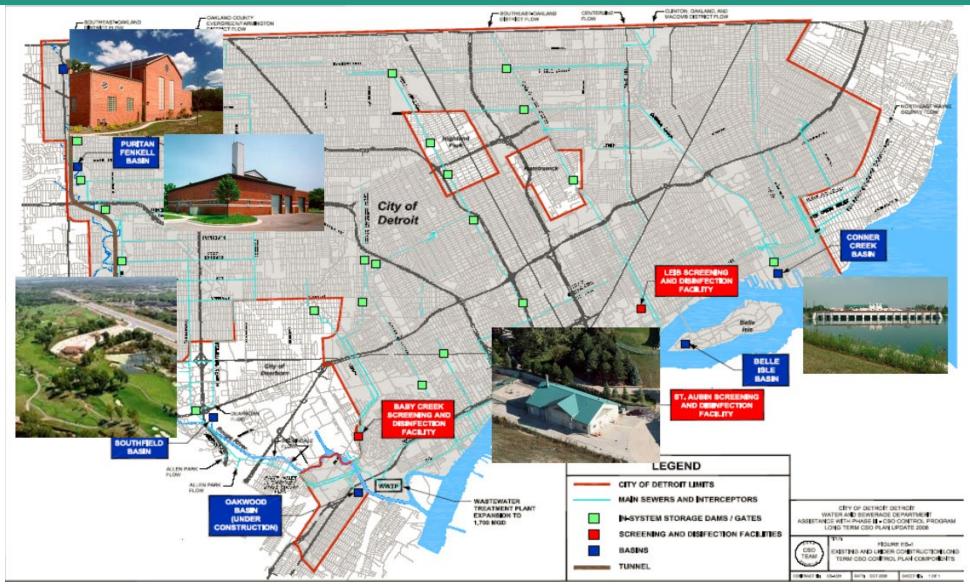
#### **Wet Weather Conditions Exceed Capacity of Sewer Systems**





## **How Combined Sewer Flows from Neighborhoods**






## **Pipe Responsibility**






## **\$1.5B Invested in Wet Weather Treatment** Facilities Along Both Rivers





6

### Nine Retention Basins Manage 170 MG of Combined Sewerage during Wet Weather Events





- Ordinance compliance results in a drainage charge credit
- Credits are good for 3-years then must be reapproved
- Approval contingent on functioning and maintained stormwater management practices

Drainage Charge Credits Green Infrastructure Projects

Stormwater Regulations

Less CSO, Less Flooding, Greener City

**LESS TREATMENT • CLEANER WATER • SHARED INVESTMENTS** 

## **City Council unanimously approves Detroit's first Stormwater Ordinance**

Requirement to manage stormwater onsite for developments or redevelopments of at lease one-half acre



# Far West Stormwater Improvement Project to be largest GSI investment in Detroit to date

#### DRAINAGE IMPROVEMENTS

- 25,000 feet of new drainage piping
- 2 Water Quality Basins
- 1000+ residential downspout disconnections

#### Water Main Improvements

- 15,000 feet trenchless water main replacement
- 500+ water service replacements

#### **Sewer Rehabilitation**

- 20,000 feet of sewer lining and repair
- Repairs to 100+ manholes and catch basins



## Far West GSI - Rouge Park before construction





## Far West GSI - Rouge Park after construction





## Far West GSI - Rouge Park south basin rendering



#### SOUTH BASIN - NEAR OUTER DRIVE



#### **Median Model Results**

#### Future Rainfall Frequency Estimates

Total rainfall amounts (inches) for use with hydrograph routing Upper line represents median value, lower line is the percent change

| Stations                    | Channel Protection<br>2-year 24-hour |                 |                    | Flow Conveyance<br>10-year 24-hour |                 |                    | Flood Control<br>25-year 24-hour |                 |                    | Flood Control<br>100-year 24-hour |                 |                    |
|-----------------------------|--------------------------------------|-----------------|--------------------|------------------------------------|-----------------|--------------------|----------------------------------|-----------------|--------------------|-----------------------------------|-----------------|--------------------|
|                             | Baseline<br>Atlas 14                 | Mid-<br>Century | End-of-<br>Century | Baseline<br>Atlas 14               | Mid-<br>Century | End-of-<br>Century | Baseline<br>Atlas 14             | Mid-<br>Century | End-of-<br>Century | Baseline<br>Atlas 14              | Mid-<br>Century | End-of-<br>Century |
| Ann Arbor UM<br>20-0230     | 2.35                                 | 3.50<br>49%     | 3.68<br>56%        | 3.26                               | 5.08<br>56%     | 4.97<br>52%        | 3.93                             | 6.16<br>57%     | 5.62<br>43%        | 5.11                              | 8.64<br>69%     | 6.72<br>32%        |
| Detroit City AP<br>20-2102  | 2.32                                 | 3.33<br>43%     | 3.66<br>58%        | 3.28                               | 5.04<br>54%     | 5.72<br>74%        | 3.96                             | 5.90<br>49%     | 7.14<br>80%        | 5.12                              | 7.72<br>51%     | 8.85<br>73%        |
| Detroit Metro AP<br>20-2103 | 2.35                                 | 3.70<br>57%     | 4.15<br>76%        | 3.31                               | 6.04<br>82%     | 6.46<br>95%        | 3.98                             | 6.86<br>72%     | 8.14<br>105%       | 5.15                              | 8.04<br>56%     | 11.41<br>122%      |
| Howell WWTP<br>20-3947      | 2.37                                 | 3.38<br>42%     | 3.32<br>40%        | 3.33                               | 5.42<br>63%     | 5.05<br>52%        | 4.05                             | 6.49<br>60%     | 6.98<br>72%        | 5.36                              | 8.60<br>60%     | 8.57<br>60%        |
| Milford GM<br>20-5452       | 2.39                                 | 2.61<br>9%      | 2.59<br>8%         | 3.35                               | 4.81<br>43%     | 4.65<br>39%        | 4.06                             | 6.82<br>68%     | 6.22<br>53%        | 5.33                              | 11.04<br>107%   | 8.33<br>56%        |
| Pontiac WWTP<br>20-6658     | 2.40                                 | 3.15<br>31%     | 3.63<br>51%        | 3.39                               | 5.07<br>50%     | 5.96<br>76%        | 4.11                             | 6.56<br>59%     | 8.17<br>99%        | 5.36                              | 8.87<br>65%     | 11.12<br>107%      |
| Wayne – Canton<br>76-0065   | 2.36                                 | 3.48<br>47%     | 3.91<br>66%        | 3.30                               | 5.64<br>71%     | 6.02<br>82%        | 3.98                             | 6.51<br>63%     | 7.61<br>91%        | 5.15                              | 7.66<br>49%     | 10.82<br>110%      |
| Ypsilanti EMU<br>20-9218    | 2.35                                 | 2.97<br>26%     | 3.15<br>34%        | 3.26                               | 4.40<br>35%     | 4.12<br>26%        | 3.93                             | 5.27<br>34%     | 4.55<br>16%        | 5.11                              | 7.35<br>44%     | 5.71<br>12%        |

#### Great Lakes Integrated Sciences + Assessments GLISA Climate Change in Great Lakes Region

- Since 1951, total annual precipitation has increased by 13.6% in the US Great Lakes region
- The **frequency and intensity** of severe storms **has increased**. This trend will likely continue as the effects of climate change become more pronounced.

GLISA

Climate Change in Great Lakes Region References

- The amount of precipitation falling in the heaviest 1% of storms increased by 35% in the U.S. Great Lakes region from 1951 through 2017.
- More severe storms may have negative economic impact due to resulting damages and increased costs of preparation, clean up, and business disruption.
- Projected increases in droughts, severe storms, and flooding events may amplify the risk of erosion, sewage overflow, interference with transportation, and flood damage.
- <u>https://glisa.umich.edu/climate-change-in-the-great-lakes-region-references/</u>

## **Current Wet Weather Management Initiatives**

- Since 2015, DWSD has installed 12 Green Stormwater Infrastructure projects that manage 61 million gallons annually
- Later this year, DWSD to start construction on a new 95 million gallon stormwater management system in the Far West neighborhood at Rouge Park
- GLWA 5-Year capital plan invests \$750 million in regional sewer system improvement
- MDOT already working with the City of Detroit on freeway stormwater diversion plans
- All entities will have to re-evaluate infrastructure based on 21<sup>st</sup> Century climate realities





Hopeful the new federal infrastructure bill, the American Jobs Plan, will strongly boost that effort



VBA CEDEPA AASHTO MBOGO

Water & Sewerage Department

## **Questions?**

DEPARTMENT