

11888 GLENFIELD AVENUE DETROIT, WAYNE COUNTY, MICHIGAN 48213

OCTOBER 24, 2025 REVISED DECEMBER 12, 2025

PREPARED FOR:

THE CITY OF DETROIT DEMOLITION DEPARTMENT

1301 THIRD STREET, SUITE 606 DETROIT, MICHIGAN 48226

11888 GLENFIELD AVENUE DETROIT, WAYNE COUNTY, MICHIGAN 48213

Prepared By:	
	OLIVIA MITCHELL
	ENVIRONMENTAL SCIENTIST
REVIEWED BY:	
	MICHAEL REECE
	Senior Project Manager
REVIEWED AND	
APPROVED BY:	
	RYAN MONTRI, CPG
	SENIOR PROJECT MANAGER

11888 Glenfield Avenue Detroit, Wayne County, Michigan DETR0060

EXECUTIVE SUMMARY

The Mannik & Smith Group, Inc. (MSG) was retained by the City of Detroit (COD) to perform sampling and analysis of fill materials at the property commonly addressed as 11888 Glenfield Avenue, Detroit, Wayne County, Michigan (hereinafter, the "Site"). The Site location, as referenced to nearby roads and major geographic features, is shown on Figure 1, Site Location Map. Figure 2, Site Layout, depicts the current layout of the Site.

This Executive Summary is provided to summarize the results of the work performed at the Site. The Executive Summary is general in nature and should not be used to replace or be considered apart from the entirety of this report.

The purpose of the work was to assist the COD's blight remediation efforts with the sampling and analysis of fill material at the Site through soil sample collection from pre-determined depths, as described in the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025. Sample analyses associated with this work included volatile organic compounds (VOCs); semivolatile organic compounds (SVOCs); polychlorinated biphenyls (PCBs); arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc (10 Michigan metals); chloride; herbicides; and pesticides. Analytical results were compared to the current generic residential cleanup criteria (GRCC) promulgated under Part 201 of the *Natural Resources and Environmental Protection Act* (NREPA), 1994 P.A. 451, as amended (Part 201).

Pursuant to a request by the COD, MSG has completed sampling and analysis of fill material at the Site, as described in the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025. Results of this work, which are subject to the limitations presented in *Appendix A, Limitations*, incorporated by reference herewith, revealed the following:

- The stratigraphy encountered during soil boring advancement of 11888 SB01, 11888 SB02, and 11888 SB03 generally consisted of one to five feet of brown sand with little gravel underlain by gray and brown silty or sandy clay to six feet below ground surface (bgs), the maximum depth explored for this investigation. Field photoionization detector (PID) readings of the recovered soil cores ranged from 0.1 to 9.7 parts per million (ppm). There were no visual (staining) and/or olfactory (e.g., petroleum-like odors) indications of contamination observed during soil sampling activities, however, concrete debris was observed in all borings.
- Concentrations of arsenic were detected in soil sample 11888 SB03 (5-6') in excess of its respective Part 201 drinking water protection criteria (DWPC), groundwater surface water interface protection criteria (GSIPC), and direct contact criteria (DCC). Concentrations of total chromium were detected in soil sample 11888 SB03 (5-6') in excess of its GSIPC.
- Concentrations of 4,4-DDD, 4,4-DDE, 4,4-DDT, barium, cadmium, alpha-chlordane, gamma-chlordane, chloride, chlordane, copper, dieldrin, heptachlor epoxide, lead, mercury, and zinc and were detected in soil samples 11888 SB01 (1-2'), 11888 SB02 (3-4'), and/or 11888 SB03 (5-6') at concentrations above laboratory method detection limits; however, detected concentrations were below their respective Part 201 GRCC and/or Statewide Default Background Levels.
- Toxicity Characteristic Leaching Procedure (TCLP) laboratory analytical results revealed that concentrations of arsenic and chromium were not in excess of 40 C.F.R. § 261.24 Title 40 Protection of Environment, Chapter I Environmental Protection Agency, Subchapter I Solid Wastes, Part 261-Identification and Listing of Hazardous Waste, Subpart C Characteristics of Hazardous Waste.
- VOCs, SVOCs, and PCBs were not detected above laboratory method detection reporting limits.
- Groundwater was not encountered during soil boring activities completed as part of this investigation.
 Groundwater is not utilized as drinking water at or near the Site, as municipal water is supplied via the COD, and the general geology of the Site and surrounding area consists of fill materials underlain by clay overlying bedrock. Therefore, the drinking water (DW) exposure pathway can be considered not

11888 Glenfield Avenue Detroit, Wayne County, Michigan DETR0060

applicable. Additionally, groundwater was not encountered during this investigation to transport contaminants to either storm sewers or surface water and the clay layer also inhibits migration, therefore, the groundwater surface water exposure pathway can be considered not applicable. Given that the site is residential, exceedances of DCC may merit further consideration.

MSG has evaluated the analytical results of the fill material. Based upon the analytical results, we have determined that the material is contaminated above the state's Part 201 GRCC, as applicable.

MSG warrants that no substantive information or documentation was deleted, omitted, or changed that would otherwise cause the MSG to reach a different conclusion. Furthermore, MSG understands that the COD and its agencies and authorities may rely upon the overall completeness, accuracy, and conclusions in this report and hereby provides reliance on the contents presented herein.

11888 Glenfield Avenue Detroit, Wayne County, Michigan DETR0060

TABLE OF CONTENTS

Execu	itive Sun	ımaryES	-1
1.0	Introdu	ıction	. 1
2.0	Purpos	e and Scope of Work	. 1
3.0	Site Ass	sessment Methodology	. 1
	3.1	Preliminary Site Work Activities	
	3.2	Soil Sample Collection	
	3.3	Toxicity Characteristic Leaching Procedure (TCLP) Soil Sample Collection	2
	3.4	Decontamination	2
	3.5	Analytical Methods	
	3.6	Quality Assurance/Quality Control	
4.0	Summa	ary of results	. 3
	4.1	Site Geology and Hydrogeology	
	4.2	Soil Sample Analytical Results	
	4.3	TCLP Analytical Results	
	4.4	Exposure Evaluation	
5.0	Finding	Js	. 4
Figur	ΔC		
Figure		Site Location Map	
Figure		Site Layout	
riguro	_	Site Edybut	
Table	S		
Table		Soil Sample Analytical Detection Summary	
Table		TCLP Analytical Detection Summary	
Appe	ndices		
Appen		Limitations	
Appen		Daily Field Reports	
Appen		Investigation Photographs	
Appen		Soil Boring Logs	
Appen		Laboratory Analytical Reports and Chain of Custody Forms	

11888 Glenfield Avenue Detroit, Wayne County, Michigan DETR0060

1.0 INTRODUCTION

The Mannik & Smith Group, Inc. (MSG) was retained by the City of Detroit (COD) to conduct sampling and analysis of fill materials at the property commonly addressed as 11888 Glenfield Avenue, Detroit, Wayne County, Michigan (hereinafter, the "Site"). The Site location as referenced to nearby roads and major geographic features is presented as *Figure 1*, *Site Location Map. Figure 2*, *Site Layout*, depicts the current layout of the Site.

The purpose of this work was to assist the COD's blight remediation efforts with the sampling and analysis of fill material at the Site through soil sample collection from pre-determined depths. The scope of work for this investigation was performed in general accordance with the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025. This report presents the findings of this investigation. Soil samples were collected by MSG on August 13, 2025. The findings of this report are valid as of the report date, subject to the limitations presented in *Appendix A, Limitations*.

At the time of this investigation, the Site was vacant and formerly occupied by residential structures. Former Site building(s) had been demolished as part of the Blight Removal Program prior to commencement of this work.

2.0 PURPOSE AND SCOPE OF WORK

The purpose of the work was to assist the COD's blight remediation efforts with the sampling and analysis of fill material at the Site through soil sample collection from pre-determined depths, as described in the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025, and modified in the field (when necessary) based on encountered conditions and professional judgment of the MSG field geologist.

MSG performed the following scope of work in general accordance with the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025:

- Advanced three (3) onsite soil borings to a maximum depth of six feet below ground surface (bgs) utilizing a
 direct push drill rig at the locations depicted on Figure 2.
- Collected one (1) discrete soil sample for laboratory analysis from each soil boring at a depth of 1-2 feet bgs,
 3-4 feet bgs, or 5-6 feet bgs, depending on the soil boring.
- Submitted soil samples to an independent analytical laboratory for chemical analysis.
- Prepared this report summarizing the activities and results of this work.

Per the COD's Sampling and Analysis of Fill Materials Scope of Services, dated June 17, 2025, sample analyses included volatile organic compounds (VOCs); semivolatile organic compounds (SVOCs); polychlorinated biphenyls (PCBs); arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc (10 Michigan metals); chloride; herbicides; and pesticides. Soil sample analytical results were compared to the current generic residential cleanup criteria (GRCC) promulgated under Part 201 of the Natural Resources and Environmental Protection Act (NREPA), 1994 P.A. 451, as amended (Part 201).

3.0 SITE ASSESSMENT METHODOLOGY

The following subsections describe the methodologies employed by MSG at the Site during sampling activities that were conducted on August 13, 2025 and October 9, 2025. Daily field activity reports prepared by MSG are presented in *Appendix B, Daily Field Reports*.

3.1 Preliminary Site Work Activities

Prior to conducting subsurface soil sampling activities, MSG contacted the MISSDIG utility locating system to identify and physically mark underground utilities. If necessary, proposed soil boring locations were modified based on the results of the utility markings. Additionally, MSG reviewed readily available Site building records

11888 Glenfield Avenue Detroit, Wayne County, Michigan DETR0060

or documents to ensure that this scope of work was conducted on the correct property and in the areas of the former Site structure.

3.2 Soil Sample Collection

The sampling plan for the Site was based on the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025, and modified in the field (if necessary) based on encountered conditions and professional judgment of MSG's field personnel. MSG advanced three (3) soil borings, designated 11888 SB01, 11888 SB02, and 11888 SB03, using a direct push drill rig at the locations depicted on Figure 2. Photographs collected during completion of this work are provided in *Appendix C, Investigation Photographs*.

Soils were continuously profiled at each soil boring location from the ground surface to the termination depth of six feet bgs using a 5-foot long, closed-piston Macro-Core® sampling device. A new disposable high-density polyethylene (HDPE) liner was placed within the sampler between each 5-foot sample interval. The recovered soil samples were examined and logged in the field by the MSG field geologist. The soils were classified by MSG's field geologist in general accordance with ASTM D 2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Soil descriptions were based on visual examination and interpretation by the field geologist.

Soil samples were examined for visual and olfactory indications of impact in accordance with the COD's Sampling and Analysis of Fill Materials Scope of Services, dated June 17, 2025, and were continuously screened upon retrieval of each sample interval with a MiniRAE 10.6 electron volt (eV) photoionization detector (PID) calibrated with isobutylene span gas. The PID measures the concentration of airborne ionizable gasses and vapors and automatically displays any detected concentrations in parts per million (ppm). The PID measures total concentrations of VOC vapors present and cannot distinguish between individual VOC constituents. PID readings for each sample interval were recorded on the individual soil boring logs, which are included in Appendix D, Soil Boring Logs.

Soil samples were collected in general accordance with the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025. The soil samples were placed into appropriate pre-preserved and unpreserved laboratory-supplied sample containers, as appropriate for the associated laboratory analyses. Soil samples collected for VOC analysis were placed in laboratory supplied pre-tared 40-milliliter (ml) vials with septum sealed threaded caps that were pre-preserved with methanol provided by the analytical laboratory. Groundwater was not encountered during the investigation.

3.3 Toxicity Characteristic Leaching Procedure (TCLP) Soil Sample Collection

On October 9, 2025, MSG mobilized to the Site to collect an additional soil sample based on request from the COD. Sample location and analyte(s) were based on the laboratory results of the initial soil investigation. MSG personnel advanced one soil boring in the immediate vicinity of the soil boring location that exhibited the highest laboratory result(s) in excess of Part 201 GRCC. Soils were continuously profiled from the ground surface to the termination depth of six feet bgs using a direct push drill rig. These soils were homogenized in a stainless-steel bowl (or equivalent) to produce a single, composite soil sample. The composite soil sample was placed into unpreserved laboratory-supplied sample containers, as appropriate for the associated laboratory analyses.

The composite soil sample was collected to create a single, representative sample to provide a laboratory result that includes the overlying and/or underlying soils in the area of concern to comprehensively represent the backfill soils that may be removed.

3.4 Decontamination

Before initiation of sampling and drilling activities and between each sampling/soil boring, equipment was cleaned to avoid the potential for cross-contamination during field activities. Pertinent equipment and tooling

11888 Glenfield Avenue Detroit, Wayne County, Michigan DETR0060

were thoroughly cleaned using a phosphate-free soap to remove chemical residue and caked-on soils. After sample collection was completed, each soil boring location was abandoned with the soil cuttings generated at each soil boring location and finished to match the original surface.

3.5 Analytical Methods

A total of three (3) soil samples, designated 11888 SB01 (1-2'), 11888 SB02 (3-4'), and 11888 SB03 (5-6'), and one (1) composite soil sample designated 11888 Glenfield Sb03 TCLP were collected as part of this investigation. These soil samples were submitted to ALS Environmental Laboratory (ALS) in Holland, Michigan for laboratory analysis of the following parameters per the requested parameters as described in the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025, and individual TCLP analysis:

- VOCs by United States Environmental Protection Agency (USEPA) Method SW8260D;
- SVOCs by USEPA Method SW8270E;
- PCBs by USEPA Method SW8082A;
- 10 Michigan metals by USEPA Method SW6020B and SW7471B;
- Chloride by USEPA Method SW9056A;
- Herbicides by USEPA Method SW8151A; and
- Pesticides by USEPA Method SW8081B.

3.6 Quality Assurance/Quality Control

Quality assurance and quality control (QA/QC) was achieved in the field by using MSG's standard operating procedures (SOPs) for sample collection, sample screening, sample preservation, and chain-of-custody protocols to ensure sample integrity. Per the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025, duplicate soil samples and field blanks were not collected.

Laboratory QC was achieved by using standard analytical methods, the analyses of spiked and laboratory quality control samples, and the use of internal laboratory quality assurance protocols. Review of the laboratory's QC data indicated the validity of the data and that it is able to be used for assessing soil samples collected during this work.

4.0 SUMMARY OF RESULTS

The following subsections include a discussion of the soil samples that were collected from the Site on August 13, 2025 and October 9, 2025.

4.1 Site Geology and Hydrogeology

The stratigraphy encountered during soil boring advancement of 11888 SB01, 11888 SB02, and 11888 SB03 generally consisted of one to five feet of brown sand with little gravel underlain by gray and brown silty or sandy clay to six feet bgs, the maximum depth explored for this investigation. Field PID readings of the recovered soil cores ranged from 0.1 to 9.7 ppm. There were no visual (staining) and/or olfactory (e.g., petroleum-like odors) indications of contamination observed during soil sampling activities, however, concrete debris was observed in all borings.

Groundwater was not encountered during soil boring activities completed as part of this investigation.

4.2 Soil Sample Analytical Results

Three (3) soil samples, designated 11888 SB01 (1-2'), 11888 SB02 (3-4'), and 11888 SB03 (5-6'), were collected from the Site and submitted to ALS for laboratory analysis of VOCs, SVOCs, PCBs, Michigan 10 Metals, chloride, herbicides, and pesticides.

11888 Glenfield Avenue Detroit, Wayne County, Michigan DETR0060

The analytical results and comparisons to applicable Part 201 GRCC are summarized in *Table 1, Soil Sample Analytical Detection Summary.* Copies of the laboratory analytical data reports and chain of custody forms are included in *Appendix E, Laboratory Analytical Reports and Chain of Custody Forms.*

A summary of the soil sample analytical detections in excess of Part 201 GRCC is provided below:

Chemical	CAS Number	Soil Sample (feet bgs)	Part 201 GRCC Exceeded / Concentration (µg/kg¹)	Maximum Detected Concentration (µg/kg)
Arsenic	7440-38-2	11888 SB03 (5-6')	DWPC ² / 4,600 GSIPC ³ / 4,600 DCC ⁴ / 7,600	8,320
Chromium (Total)	7440-47-3	11888 SB03 (5-6')	GSIPC / 3,300	24,500

¹µg/kg – micrograms per kilogram;

²DWPC – Drinking Water Protection Criteria

³GSIPC – Groundwater Surface Water Interface Protection Criteria

⁴DCC – Direct Contact Criteria

4.3 TCLP Analytical Results

Arsenic and chromium were analyzed following leach testing using USEPA method EPA 6020 B. Laboratory results are summarized and compared to 40 C.F.R. § 261.24 Title 40 - Protection of Environment, Chapter I - Environmental Protection Agency, Subchapter I - Solid Wastes, Part 261 - Identification and Listing of Hazardous Waste, Subpart C - Characteristics of Hazardous Waste in Table 2, TCLP Analytical Detection Summary Table. Upon comparison, the laboratory analytical results following TCLP testing were below laboratory method detection limits.

Copies of the laboratory analytical data report and chain of custody forms are included in Appendix E.

4.4 Exposure Evaluation

MSG has completed a preliminary evaluation for the Site and associated exposure pathways. Cleanup criteria are applicable if it is reasonable and relevant for the corresponding exposure pathway to be or become complete.

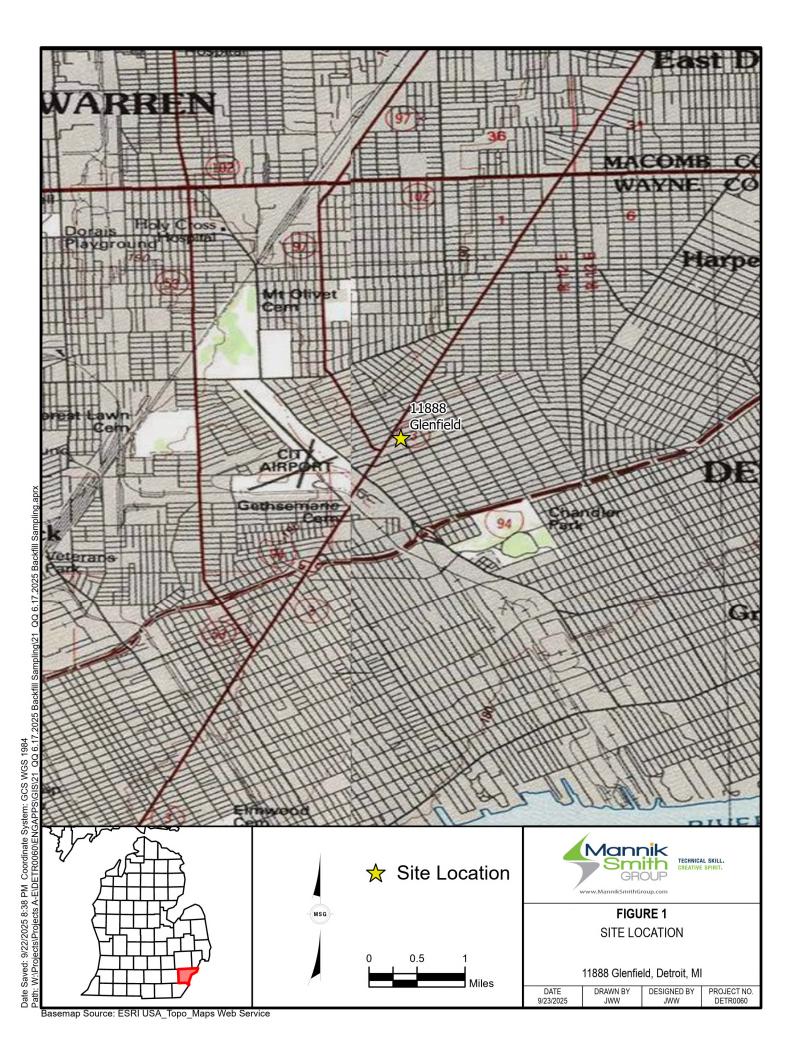
Groundwater was not encountered during soil boring activities completed as part of this investigation. Groundwater is not utilized as drinking water at or near the Site, as municipal water is supplied via the COD, and the general geology of the Site and surrounding area consists of fill materials underlain by clay overlying bedrock. Therefore, the drinking water (DW) exposure pathway can be considered not applicable. Additionally, groundwater was not encountered during this investigation to transport contaminants to either storm sewers or surface water and the clay layer also inhibits migration, therefore, the groundwater surface water exposure pathway can be considered not applicable. Given that the site is residential, exceedances of DCC may merit further consideration.

5.0 FINDINGS

MSG has evaluated the analytical results of the fill material samples collected at the Site in general accordance with the COD's *Sampling and Analysis of Fill Materials Scope of Services*, dated June 17, 2025. The findings of this investigation are presented below:

The stratigraphy encountered during soil boring advancement of 11888 SB01, 11888 SB02, and 11888 SB03 generally consisted of one to five feet of brown sand with little gravel underlain by gray and brown silty or sandy clay to six feet bgs, the maximum depth explored for this investigation. Field PID readings of the recovered soil cores ranged from 0.1 to 9.7 ppm. There were no visual (staining) and/or olfactory

11888 Glenfield Avenue Detroit, Wayne County, Michigan DETR0060


(e.g., petroleum-like odors) indications of contamination observed during soil sampling activities, however, concrete debris was observed in all borings.

- Concentrations of arsenic were detected in soil sample 11888 SB03 (5-6') in excess of its respective Part 201 DWPC, GSIPC, and DCC. Concentrations of total chromium were detected in soil sample 11888 SB03 (5-6') in excess of its GSIPC.
- Concentrations of 4,4-DDD, 4,4-DDE, 4,4-DDT, barium, cadmium, alpha-chlordane, gamma-chlordane, chloride, chlordane, copper, dieldrin, heptachlor epoxide, lead, mercury, and zinc and were detected in soil samples 11888 SB01 (1-2'), 11888 SB02 (3-4'), and/or 11888 SB03 (5-6') at concentrations above laboratory method detection limits; however, detected concentrations were below their respective Part 201 GRCC and/or Statewide Default Background Levels.
- TCLP laboratory analytical results revealed that concentrations of arsenic and chromium were not in excess of 40 C.F.R. § 261.24 Title 40 Protection of Environment, Chapter I Environmental Protection Agency, Subchapter I Solid Wastes, Part 261- Identification and Listing of Hazardous Waste, Subpart C Characteristics of Hazardous Waste.
- VOCs, SVOCs, and PCBs were not detected above laboratory method detection reporting limits.
- Groundwater was not encountered during soil boring activities completed as part of this investigation. Groundwater is not utilized as drinking water at or near the Site, as municipal water is supplied via the COD, and the general geology of the Site and surrounding area consists of fill materials underlain by clay overlying bedrock. Therefore, the drinking water (DW) exposure pathway can be considered not applicable. Additionally, groundwater was not encountered during this investigation to transport contaminants to either storm sewers or surface water and the clay layer also inhibits migration, therefore, the groundwater surface water exposure pathway can be considered not applicable. Given that the site is residential, exceedances of DCC may merit further consideration.

MSG has evaluated the analytical results of the fill material. Based upon the analytical results, we have determined that the material is contaminated above the state's Part 201 GRCC, as applicable.

MSG warrants that no substantive information or documentation was deleted, omitted, or changed that would otherwise cause the MSG to reach a different conclusion. Furthermore, MSG understands that the COD and its agencies and authorities may rely upon the overall completeness, accuracy, and conclusions in this report and hereby provides reliance on the contents presented herein.

FIGURES

TABLES

Page 1 of 1

Detroit Backfill Sampling 11888 Glenfield, Detroit, Michigan

							Michigan	10 Metals								Pesticides	/Herbicides					Inorganic Anions/Ions
SOIL: Part 201/213 Generic Residential Cleanup Criteria Revised October 12, 2023 Units: μg/kg	(NOCs) spunoduc	Compounds (SVOCs)	Arsenic	Barium (B)	Cadmium (B)	Chromium (Total)	Copper (B)	Lead (B)	Mercury (B,Z)	Selenium (B)	Sliver (B)	Zinc (B)	4,4;-DDD	4,4'-DDE	4,4'-DDT	Dieldrin	Heptachlor Epoxide	alpha-Chlordane	gamma-chlordane	Chlordane	Biphenyls (PCBs)	Chloride
CAS Number	ပ္ပ	<u>ا</u> ذِ	7440-38-2	7440-39-3	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7439-97-6	7782-49-2	7440-22-4	7440-66-6	72548	72-55-9	50-29-3	60-57-1	1024-57-3	NA	NA	57-74-9	<u>Б</u>	16887006
Statewide Default Background Levels	ä	gal	5,800	75,000	1,200	18,000	32,000	21,000	130	410	1,000	47,000	NA	NA	NA	NA	NA	NA	NA	NA	late	NA
Drinking Water Protection Criteria (DWPC)	- g	ō	4,600	1.3E+06	6,000	30,000	5.8E+06	7.0E+05	1,700	4,000	4,500	2.4E+06	NLL	NLL	NLL	NLL	NLL	NA	NA	NLL	ë	5.00E+06
Groundwater Surface Water Interface Protection Criteria (GSIPC)	<u>e</u>	豐	4,600	(G)	(G,X)	3,300	(G)	(G,X)	50 (M); 1.2	400	100 (M); 27	(G)	NLL	NLL	NLL	NLL	NLL	NA	NA	NLL	동	(X)
Soil Volatilization to Indoor Air Inhalation (SVIIC)	lati	8	NLV	NLV	NLV	NLV	NLV	NLV	48,000	NLV	NLV	NLV	NLV	NLV	NLV	1.40E+05	NLV	NA	NA	1.10E+07	\	NLV
Soil Volatilization to Indoor Air Pathway (SVIAP)	8	Ę	NA	NA	NA		NA	NA	22 (M)	NA	NA	NA	NLV	NLV	NLV	770	NA	NA	NA	13,000	Δ.	
Infinite Source Volatile Soil Inhalation Criteria (VSIC)		Se	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	NLV	NLV	NLV	19000	NLV	NA	NA	1.20E+06		NLV
Finite Source Volatile Soil Inhalation Criteria (5 m) (VSIC 5m)			NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	NLV	NLV	NLV	1900	NLV	NA	NA	1.20E+06		NLV
Finite Source Volatile Soil Inhalation Criteria (2 m) (VSIC 2m)			NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV	NLV	NLV	NLV	19000	NLV	NA	NA	1.20E+06		NLV
Particulate Soil Inhalation Criteria (PSIC)			7.2E+05	3.3E+08	1.7E+06	2.6E+05	1.3E+08	1.0E+08	2.0E+07	1.3E+08	6.7E+06	ID	4.4E+07	3.2E+07	3.2E+07	6.8E+05	1.2E+06	NA	NA	3.1E+07		ID
Direct Contact Criteria (DCC)			7,600	3.7E+07	5.5E+05	2.5E+06	2.0E+07	4.0E+05	1.6E+05	2.6E+06	2.5E+06	1.7E+08	95,000	95,000	45,000	1,100	3,100	NA	NA	31,000		5.0E+5 (F)
Soil Saturation Concentration Screening Levels (C _{sat})			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA
Recommended Interim Action Screening Level (RIASL)			NA	NA	NA	NA	NA	NA	2.7E-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
SAMPLE ID DEPTH SAMPLE DATE																					•	
11888 SB01 1-2 8/13/2025	ND	ND	5,100	48,400	<1,430	12,600	26,600	39,300	70.2	<3,570	<3,570	64,200	4.5	53	17	2.1	2.0	10	8.0	18.0	ND	60,900
11888 SB02 3-4 8/13/2025	ND	ND	4,420	41,200	<1,310	13,800	17,100	44,100	66.2	<3,270	<3,270	71,700	5.3	43	7.0	<1.9	<1.9	2.6	<1.9	2.6	ND	111,000
11888 SB03 5-6 8/13/2025	ND	ND	8,320	85,000	<1,520	24,500	27,800	12,900	63.0	<3,810	<3,810	65,600	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<31	ND	17,000

Notes:

Bold indicates concentration above laboratory reporting limits.

Exceeds DWPC

Exceeds GSIPC

Exceeds Applicable Soil Vapor Inhalation screening level

Exceeds Two or More DWPC, GSIPC, and/or Applicable Soil Vapor Inhalation screening levels

Exceeds PSIC, DCC, and/or Csat, likely exceeds others

ND = Not Detected above laboratory reporting limits

NS = Not Sampled or Not Analyzed

NR = Not Reported (Data missing from provided report)

Notes in parentheses and standard abbreviations from Part 201 Rules 299.1 through 299.50, updated October 12, 2023

VIAP Screening Levels and notes from EGLE Guidance Document For The Vapor Intrusion Pathway, Appendix D.1 Vapor Intrusion Screening Values, May 2013, updated February 26, 2024

Table 2 TCLP Analytical Detection Summary

Detroit Backfill Sampling 11888 Glenfield, Detroit, Michigan

	R. § 261.24	TCLF	P Metals
Title 40 - Protect Chapter I - Environm Subchapter I Part 261- Identification and Subpart C - Characteri	eral Regulations ion of Environment ental Protection Agency - Solid Wastes d Listing of Hazardous Waste stics of Hazardous Waste	Arsenic	Chromium
Maximum Concentration of Contami	5.00	5.00	
SAMPLE ID			
11888 Glenfield SB03 TCLP	< 0.0499	< 0.0499	

Notes:

Bold indicates concentration above method detection limits.

Exceeds Maximum Concentration of Contaminates for the Toxicity Characteristic

Page 1 of 1

APPENDIX A LIMITATIONS Mannik GROUP

LIMITATIONS

This investigation and related documentation are site-specific, which means they pertain to the environmental conditions of the Site only.

The Mannik & Smith Group, Inc. (MSG) performed its services associated with the investigation in conformance with the care and skill ordinarily used by other reputable environmental consulting firms practicing under similar conditions, at the same time, and in the same or similar locality. In preparing this report, MSG may have relied on information obtained from or provided by others. MSG makes no representation or warranty regarding the accuracy or completeness of this information gathered through outside sources or subcontracted services. No warranty, guarantee, or certification of any kind, expressed or implied, at common law or created by statute, is extended, made, or intended by rendering these environmental consulting services or by furnishing this written report. Environmental conditions and regulations are subject to constant change and reinterpretation. One should not assume that any on-site conditions and/or regulatory statutes or rules will remain constant after MSG has completed the scope of work for this project. Furthermore, because the facts stated in these reports are subject to professional interpretation, differing conclusions could be reached by other environmental professionals.

Contaminants may be hidden in subsurface material, covered by pavement, vegetation, or other substances. Additionally, contamination may not be present in predictable locations. MSG has prepared a logical investigation program to reduce the client's risk of discovering unknown contamination. This risk may be reduced by more extensive exploration on the Site. Even with additional exploration, it is not possible to completely eliminate the risk of discovering contamination on the Site. It can not be assumed that samples collected and conditions observed are representative of an area that has not been sampled and/or tested.

Some environmental assessments are undertaken to satisfy "due diligence", "all appropriate inquiry," or other regulatory requirements provided in federal, state, or local law. Although MSG strives to investigate a site in accordance with the scope of work as defined by written agreement with a client, it cannot warrant that the work undertaken for this report with satisfy "due diligence", "all appropriate inquiry," or any other similar standard under any federal, state, or local law.

Due to changing environmental regulatory conditions and potential on-site activities after the completion of investigation, the client may rely upon the conditions within this investigation report for a period of six months from the report's issuance date.

APPENDIX B DAILY FIELD REPORTS

DAILY FIELD REPORT

	etroit Demolition De				ort No.:	_1		
Project: Sampling a	and Analysis of Fill	Material		Job 1	No.:	DETR0	060	
Date: 08/13/2025	Day:	Wednesday	Temp:	70 ° F	(AM)	N/A	(PM)	1
MSG Personnel:	SRK, BM	Wednesday	Cloud Cover:	60%	(AM)	N/A	(PM)	
			Precip.:	N/A	(AM)	N/A	(PM)	
Personnel: MSG			•		` <u> </u>		(PM)	
MSG Hours On-Site:	~ 1 hours							
Contractors Informati	on							
Contractor:		No. Men and Typ			quipment	• •		
MSG Summary of Work Per	rformod:	2; Operator/Geolo	ogist T		Geoprobe	7822DT		
•		ngs to a maximum de	nth of 6 feet helow	around surf	ace (has)			
	` '	•	•	•	. • ,	ha impaa	tad basad	on field
Collected soil indicators).	samples from each	soil boring (from the	e interval with the	greatest po	otentiai to	be impac	teu baseu	on neid
Field Notes:								
 1050 – SRK ar 	nd BM onsite (11888	3 Glenfield Avenue)						
 1052 – Unload 	ed equipment and n	narked boring location	ns					
• 1100 – Began	drilling SB01							
• 1102 – Finishe	•							
• 1104 – Began	•							
1400 Finishs	•							
	· ·							
• 1108 – Began	ŭ							
•	ed 11888 SB01 (1-2)							
 1110 – Finishe 	d drilling SB03							
 1125 – Sample 	ed 11888 SB02 (3-4))						
 1138 – Sample 	ed 11888 SB03 (5-6))						
• 1140 – Packed	up equipment							
• 1150 – MSG of								
1100 11100 0								
Supporting Documenta	tion							
v	es No		Yes No				Yes	No
Photograph Taken		Samples Collected		Во	oring/MW	Logs	\boxtimes	
Photo Log Attached		COC Attached				Book Take		
Problem Identification	and Corrective Mo	easures						
N/A		<u></u>						
Resolved?	Yes No [

DAILY FIELD REPORT

	•	troit Demolition D	*		Rep	ort No.:			
Project: Sar	mpling ar	nd Analysis of Fill	Material		Job	No.:	DETR00	60	
Date: 10/9/20 MSG Personne		SRK, JF Day:	Thursday	Temp: Cloud Cover: Precip.:	50 ° F 0% N/A	(AM) _ (AM) _ (AM)	N/A (PM) PM) PM)	
Personnel: MS	G					_	\	1 1/1/	
MSG Hours On		~ 1 hours		-					
MISG Hours Of	n-site.	~ I Hours		-					
Contractors In	formatic	nn -							
Contractor:	1011111110	,,,,	No. Men and T	Type:]	Equipmen	it Type:		
MSG			2; Operator/Ge	* -		Geoprobe			
Summary of W	ork Per	formed:	, 1						
Advance	ced one (1) onsite soil borin	gs to a maximum d	lepth of 6 feet below of	round surfa	ce (bas)			
	,	,	•	osite sample of from z		,			
	eu TOLF	Of the material from	ii soii boiing (comp		2610 10 0 166	t bys).			
Field Notes:									
• 0958 –	MSG (SI	RK, JF) onsite (11	888 Glenfield)						
• 1000 –	Attempto	ed to locate previo	us boring locations.	. Marked out new bori	ng location.				
• 1014 –	. Regan d	Irilling SB03 TCLP	•						
	•	· ·	Б						
• 1016 –	Finished	l drilling SB03 TCL	.P						
 1025 – 	Sampled	d 11888 Glenfield	SB03 TCLP						
• 1035 –	Collecte	d GPS points							
		·							
		up equipment							
• 1048 –	MSG off	site							
Supporting Doc	umentat	ion							
	V.	N.		V N-				V	NI.
Photograph Take	Ye en ⊠		Samples Collect	Yes No ted ⊠ □	D	oring/MV	V I ogs	Yes ⊠	No 🗆
Photo Log Attacl			COC Attached				v Logs Book Taker		H
Problem Identif N/A	ication a	and Corrective M	easures						
Resolved?		Ves No.							

APPENDIX C Investigation Photographs

Photo 1: View of Site at the time of initial soil boring activities

Photo 2: Viewing 11888 SB01 Drilling, Facing East.

Photo 3: Viewing 11888 SB01 Soils, Facing Southeast.

Photo 4: Viewing 11888 SB02 Drilling, Facing East.

Photo 5: Viewing 11888 SB02 Soils, Facing Southeast.

Photo 6: Viewing 11888 SB03 Drilling, Facing East.

Photo 7: Viewing 11888 SB03 Soils, Facing Southeast.

Photo 8: View of Site at the time of TCLP soil boring activities

Photo 9: View of TCLP soil boring location

Photo 10: View of soil recovery at the time of TCLP sampling

APPENDIX D SOIL BORING LOGS

The Mannik & Smith Group, Inc. 2365 Haggerty Rd South Canton, MI 48188 ph: 734-397-3100 fax: 734-397-3131 www.manniksmithgroup.com **BORING ID: SB01**

PAGE 1 OF 1

CL	IENT City	of Det	roit			PROJECT NA	ME _1	1888 G	lenfield				
PR	OJECT NU	MBER	DET	R0060		PROJECT LOCATION 11888 Glenfield Ave, Detroit, Michigan							
DA	TE START	ED _8	/13/25	i	COMPLETED 8/13/25	BORING DIAM	METER	: 3.25	inches				
ਜੂ DR	ILLING CO	NTRA	CTOR	MSG	·	SURVEY COORDINATES: N/A							
B DR	ILLING ME	THOD	_Dire	ct Pusł	1	GROUND SURFACE ELEV.: N/A							
g LO	GGED BY	SRK			CHECKED BY PDH	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐							
NC	TES					▼ WATER LEVEL AFTER DRILLING: N/A							
SIDE	T												
NFIELD/BORING LOG DEPTH	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTION	I	PID (ppm)	LABORATORY SAMPLE	REMARKS				
888 GLE				1.0	Brown SAND, some gravel, little glass de		0.1						
SITES)/11					Brown and Gray Sandy CLAY, some gra	vel, dry	1.1	X	Collected soil sample 11888 SB01 (1-2) at 11:08				
SAMPLING (48 SITES)/11888 GLENFIELD/B	_ MC	2.0			Some concrete debris from 2 - 4 feet bgs	3	7.0						
LL SAMP	1	2.0					9.7						
S BACK	$\parallel \parallel$						6.4						
7.25.202				6.0	Bottom of borehole at 6.0 fee	et.	1.9						
N/23 O													
1060/ADM													
A-E\DETR0060\ADM													
ROJECTS A													
₽l													
V:\PROJECTS													
5 13:04 - V													
T - 8/20/2													
STD US LAB.GD													
(PID) - GINI													
NV BORING LOG													

The Mannik & Smith Group, Inc. 2365 Haggerty Rd South Canton, MI 48188 ph: 734-397-3100 fax: 734-397-3131 www.manniksmithgroup.com **BORING ID: SB02**

PAGE 1 OF 1

	CLIEN	NT City	of Det	roit			PROJECT NA	ME _1	1888 G	lenfield				
	PROJ	ECT NU	MBER	DET	R0060		PROJECT LOCATION _11888 Glenfield Ave, Detroit, Michigan							
	DATE	START	ED _8	/13/25		COMPLETED <u>8/13/25</u>	BORING DIAI	METER	: 3.25	inches				
GPJ	DRILL	ING CO	NTRA	CTOR	MSG	i .	SURVEY COORDINATES: N/A GROUND SURFACE ELEV.: N/A							
888.	DRILL	ING ME	THOD	Direc	ct Push	1								
60_1	LOGG	SED BY	SRK			CHECKED BY PDH	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐							
1800	NOTE	:s					▼ WATER LE	VEL AI	FTER D	RILLING: N/A				
S/DE							_		Ι.					
GLENFIELD\BORING LOG	O (FEET)	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTIO	N	PID (ppm)	LABORATORY SAMPLE	REMARKS				
GLE)	Ŭ					Brown to Dark Brown SAND, some clay moist	, some gravel,							
SITES)/11888		1				most		0.3						
SITES								2.2						
3 (48 8						Becomes dry at 2 feet bgs		2.2						
SAMPLING (48	. –	MC 1	3.0			Some concrete debris at 3 feet bgs		4.3						
								1.3	\triangle	Collected soil sample 11888 SB02 (3-4) at 11:25				
BACKFILL	5				5.0									
2025	<u> </u>	-			3.0	Brown and Gray Silty CLAY, some grav	el, dry	0.7						
7.25	.				6.0	Bottom of borehole at 6.0 fe	and t	0.4						
900 000						BOILOITI OF BOTEFIOIE AL 6.0 TE	:C l.							
MIN/S														
0/ADI														
R006														
:\DET														
PROJECTS A-E\DETR0060\ADMIN\23														
DEC														
S/PRC														
JECT														
:\PRO														
74 - W														
25 13:														
8/20/;														
GDT -														
S LAB.														
STD US														
GINT														
)-(OIL														
LOG (
RING														
:NV BORING LOG (PID) - GINT STD US LAB.GDT - 8/20/25 13:04 - W:\PROJECTS\														

The Mannik & Smith Group, Inc. 2365 Haggerty Rd South Canton, MI 48188 ph: 734-397-3100 fax: 734-397-3131 www.manniksmithgroup.com **BORING ID: SB03**

PAGE 1 OF 1

- 1	CLIEN	IT City	of Det	roit			PROJECT NA	ME _1	1888 G	lenfield			
L	PROJ	ECT NU	MBER	DET	R0060		PROJECT LO	CATIO	N <u>118</u>	88 Glenfield Ave, Detroit, Michigan			
Ţ	DATE	START	ED _8	/13/25		COMPLETED 8/13/25	BORING DIA	METER	: 3.25	inches			
G I	ORILL	ING CO	NTRA	CTOR	MSG	i .	SURVEY COO	ORDIN/	ATES: N	I/A			
888	DRILL	ING ME	THOD	Dire	ct Push	1	GROUND SURFACE ELEV.: N/A						
 	OGG	ED BY	SRK			CHECKED BY PDH	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐						
	NOTE	s					▼ WATER LE	VEL A	FTER D	RILLING: N/A			
NFIELD/BORING LOG	O (FEET)	SAMPLE TYPE NUMBER	RECOVERY (FEET)	GRAPHIC LOG	DEPTH (FEET)	MATERIAL DESCRIPTIO	N	PID (ppm)	LABORATORY SAMPLE	REMARKS			
	Ĭ					Dark Brown SAND, some gravel, moist							
(PID) - GINI SID US LAB.GDI - 8/20/25 13:04 - WAPROJECTS/PROJECTS/PROJECTS A-ENDETRO060/ADMIN/23_QQ 7.25.2025 BACKFILL SAMPLING (48 SITES)/11888 GLENFIELD/B	5	MC 1	3.5		2.0 4.0 5.0 6.0	Dark Brown SAND, some gravel, moist Brown and Gray Silty CLAY, some grav Brick and Concrete Debris (Fill), dry Brown and Gray Silty CLAY, some grav Bottom of borehole at 6.0 fe	el, dry	0.1 0.2 0.1 0.1 0.1		Collected soil sample 11888 SB03 (5-6) at 11:38			
NV BORING LOG													

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY FORMS

CERTIFICATE OF ANALYSIS

Work Order

HN2511422

Client

The Mannik & Smith Group, Inc.

Project

11888_Glenfield

Project Date

August 14, 2025

Reporting Contact

Ryan Montri

Work Order: HN2511422

September 05, 2025

Ryan Montri The Mannik & Smith Group, Inc. 2365 Haggerty Road South Suite 100 Canton, MI 48188

Re: 11888_Glenfield

Dear Ryan,

Enclosed are the results of the sample(s) submitted to our laboratory.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to contact me: ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Bill Carey
/S/ BILL CAREY

Project Manager

Client: The Mannik & Smith Group, Inc. Work Order: HN2511422 **Project:**

11888 Glenfield Date Received: 14-Aug-2025

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt

3 soil/solid samples were received for analysis at ALS Environmental on 14-Aug-2025. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Inorganics

EPA 9056A-S (High)

Run ID: 3405747

Matrix spike value was outside upper limit of calibration. Processed at equivalent dilution level as the parent. C,S Matrix spike duplicate value was outside upper limit of calibration. Processed at equivalent dilution level as the parent. C,S

Organics

EPA 8260D-FULL HN-5035A-10mL-S

Run ID: 3424975

The Continuing Calibration Verification did not meet acceptance criteria with low bias. Instrument sensitivity was verified as sufficient through the analysis of a low-level standard. The following non-detects are reported without qualification: dichlorodifluoromethane

The MSD recovery was above the upper control limit. The corresponding result in the parent sample was non-detect, therefore no qualification is necessary, see gc report

The MSD recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for the following analyte(s): 1,1,2,2-tetrachloroethane

The LCS recovery was above the upper control limit. All the sample results in the batch were non-detect. No qualification is necessary for this analyte: chloromethane

The MS recovery was above the upper control limit. The corresponding result in the parent sample was non-detect, therefore no qualification is necessary: see qc report

The MS recovery was below the lower control limit. The corresponding result in the parent sample may be biased low for this analyte: 1,1,2,2-tetrachlororethane

Metals

EPA 6020B-3050B-S

Run ID: 3414291

The MSD recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Ba, Pb, Zn batch 2167684

The MS recovery was outside of the control limit; however, the result in the parent sample is greater than 4x the spike amount. No qualification is required for this analyte: Ba, Pb, Zn batch 2167684

Run ID: 3414291

HN2511422-001: Selenium - The reporting limit is elevated due to dilution for high concentrations of non-target analytes.

HN2511422-001: Cadmium - The reporting limit is elevated due to dilution for high concentrations of non-target analytes. Cd, Se, Ag

HN2511422-001: Silver - The reporting limit is elevated due to dilution for high concentrations of non-target analytes. Cd, Se, Ag

HN2511422-002: Silver - The reporting limit is elevated due to dilution for high concentrations of non-target analytes. Cd, Se. Ag

HN2511422-002: Cadmium - The reporting limit is elevated due to dilution for high concentrations of non-target analytes. Cd, Se, Ag

HN2511422-002: Selenium - The reporting limit is elevated due to dilution for high concentrations of non-target analytes. Cd, Se, Ag

HN2511422-003: Selenium - The reporting limit is elevated due to dilution for high concentrations of non-target analytes. Cd, Se, Ag

HN2511422-003: Cadmium - The reporting limit is elevated due to dilution for high concentrations of non-target analytes. Cd, Se, Ag

HN2511422-003: Silver - The reporting limit is elevated due to dilution for high concentrations of non-target analytes. Cd, Se, Ag

SAMPLE DETECTION SUMMARY

EPA 8151A

This form includes only detections above the limits as presented.

For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: 11888 SB01 (1-2)		Lab ID:	HN2511422-001		
Analyte	Results	Flag	MRL	Units	Method
Arsenic	5.10		3.57	mg/kg	EPA 6020B
Barium	48.4		3.57	mg/kg	EPA 6020B
Chloride	60.9		11.6	mg/kg	EPA 9056A
Chromium	12.6		3.57	mg/kg	EPA 6020B
Copper	26.6		3.57	mg/kg	EPA 6020B
Lead	39.3		3.57	mg/kg	EPA 6020B
Mercury	0.0702		0.0200	mg/kg	EPA 7471B
Percent Moisture	13.5		0.1	%	EPA 3550C
Subcontract Analysis	See attached.			-	EPA 8151A
Subcontract Analysis	See attached.			-	EPA 8081B
Subcontract Analysis	See attached.			-	EPA 8082A
Subcontract Analysis	See attached.			-	EPA 8270E
Zinc	64.2		7.15	mg/kg	EPA 6020B
CLIENT ID: 11888 SB02 (3-4)		Lab ID:	HN2511422-002		
Analyte	Results	Flag	MRL	Units	Method
Arsenic	4.42		3.27	mg/kg	EPA 6020B
Barium	41.2		3.27	mg/kg	EPA 6020B
Chloride	111		11.3	mg/kg	EPA 9056A
Chromium	13.8		3.27	mg/kg	EPA 6020B
Copper	17.1		3.27	mg/kg	EPA 6020B
Lead	44.1		3.27	mg/kg	EPA 6020B
Mercury	0.0662		0.0200	mg/kg	EPA 7471B
Percent Moisture	11.1		0.1	%	EPA 3550C
Subcontract Analysis	See attached.			-	EPA 8151A
Subcontract Analysis	See attached.			-	EPA 8081B
Subcontract Analysis	See attached.			-	EPA 8082A
Subcontract Analysis	See attached.			-	EPA 8270E
Zinc	71.7		6.53	mg/kg	EPA 6020B
CLIENT ID: 11888 SB03 (5-6)		Lab ID:	HN2511422-003		
Analyte	Results	Flag	MRL	Units	Method
Arsenic	8.32		3.81	mg/kg	EPA 6020B
Barium	85.0		3.81	mg/kg	EPA 6020B
Chloride	17.0		12.3	mg/kg	EPA 9056A
Chromium	24.5		3.81	mg/kg	EPA 6020B
Copper	27.8		3.81	mg/kg	EPA 6020B
Lead	12.9		3.81	mg/kg	EPA 6020B
Mercury	0.0630		0.0238	mg/kg	EPA 7471B
Percent Moisture	19.3		0.1	%	EPA 3550C

See attached.

Subcontract Analysis

SAMPLE DETECTION SUMMARY

This form includes only detections above the limits as presented. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: 11888 SB03 (5-6)	Lab ID: HN2511422-003								
Analyte	Results Flag	MRL	Units	Method					
Subcontract Analysis	See attached.		-	EPA 8081B					
Subcontract Analysis	See attached.		-	EPA 8082A					
Subcontract Analysis	See attached.		-	EPA 8270E					
Zinc	65.6	7.61	mg/kg	EPA 6020B					

SAMPLE SUMMARY

Client: The Mannik & Smith Group, Inc.

Project: 11888_Glenfield **Workorder:** HN2511422

Laboratory Sample ID	Client Sample ID	Sample Matrix	Collection Date	Date Received
HN2511422-001	11888 SB01 (1-2)	SOIL/SOLID	08/13/25 11:08	08/14/25 08:00
HN2511422-002	11888 SB02 (3-4)	SOIL/SOLID	08/13/25 11:25	08/14/25 08:00
HN2511422-003	11888 SB03 (5-6)	SOIL/SOLID	08/13/25 11:38	08/14/25 08:00

hain	of C	usto	dy F	orm	
Page	_1_	of	_1_		
t Manag	er:				

	-		ALS Project Ma	nager:							Work	Order #	:		
Cu	stomer Information		Project Inf	ormation					Р	aramet	er/Met	hod Req	uest for A	Analysis	
Purchase Order		Project N	lame 11888_Gle	enfield			A	A VOCs (U.S. EPA Method 8260C (or Method 8260))							
Wark Order		Project Nu	mber DETR0060)			В	SVOCs (U.S. EPA Method 8270D (or Method 8270))							
Company Name	The Mannik and Smith Group	Bill To Company The Mannik and Smith Group					C	PCBs (U.S	. EPA N	lethod	8082)				
Send Report To	Ryan Montri	Invoice	Attn.				D.	Mi 10 Meta	als (U.S.	EPA 6	000/70	00 Serie	s Method	s)	
	2365 Haggerty Rd South Suite 100			erty Rd So	uth Suite	100	E	Chorides	(U.S. EP	A Meth	od 905	6A)			
Address		Add	dress				F	Pesticides	(U.S. E	PA Met	thod 80)81B (or	Method 8	3081))	
City/State/Zip	Canton, MI 48188	City/State	e/Zip Canton, M	1 48188			G	Herbicides	s (U.S. E	PA Me	thod 8	151A (or	r Method 8	8151))	
Phone	734-397-3100	P	hone 734-397-3	100			н								
Fax			Fax												
e-Mail Address	RMontri@manniksmithgroup.com	e-Mail Add	dress:				J								
No.	Sample Description	Date	Time	Matrix	Pres.	# Bottles	Α	В	С	D	E	F	G	н і і	J Hold
1 11888 SB01	(1-2)	8/13/25	1108	Soil	7	3	X	X	X	X	X	X	X	Environm	ental Divisi
2 11888 SB02	(3~4)		1175	Soil	7	3								Holland	D -f
3 11888 SB03	(5-6)	1	1138	Soil	7	3	J	1 4	4	4	4	L	6		ter Reference 251142
4.														1 11 12	-01112
5															NVA MOE
6										_	-				
7									-	-		-			
(1) 8 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)							_							Telephone: +1	616 200 6070
9.2								-	-		\rightarrow	-		releptione . + r	010 399 0070
10 Sampjer(s): Please Prin	t& Sign	Shipme	ent Method:	Requ	ired Turn	round Tim	e:			Other			Results	s Due Date;	
Shannan	1/4 //	mol		_s	TD 10 Wk D	ays	5 Wk	Days	2 Wk D		24 F	łour			
Relinquished by:	Date:	1 1	Received by:				_	Votes:	Quo	te# HN-0	061825-	M&S-MA	1		
Shunnon 1hal Zmare 28/13/25 1830									122						
Relinquished by:	elinquished by: Date: Time: Received by (Laboratory):							Cooler Ten				k Box Be			
Logged by (Laboratory)			Checked by (Lab	oratory).			+	4.60		$\overline{}$		ndard QC QC + Rav			P-Checklist P Level IV
roaden ny frantsatoty)	KC 8/14/25	04.32	ooned by (man					IRL				846 CLP-		TIRRI	Level IV
Preservative Key: 1-HCL	2-HNO3 3-H2SO4 4-NaOH 5-Na2S20	03 6-NaHSO4 7-0	Other 8-4 degree	s C 9-5035	100			1.1.4		\dagger	r:				

Note: Any changes must be made in writing once samples and COC Form have been submitted to ALS Laboratory Group.

Signature denotes acceptance of ALS Group USA, Corp. Terms and Conditions - Please click the link below for detailed Terms & Conditions:

https://www.alsglobal.com/ALSGroupUSACorpTC

ALS Environmental

Laboratory location:

ALS Holland Sample Receiving Checklist

Received by:	PC
Date/Time:	8/14/25 0800
Carrier Name:	OS
Shipping container/cooler in good condition?	Yes / No / Not Present
Custody seals intact on shipping container/cooler?	Yes / No / Not Present
Custody seals intact on sample bottles?	Yes / No / Not Present
Chain of Custody present?	Yes / No
COC signed when relinquished and received?	Yes / No
COC agrees with sample labels?	Yés / No
Samples in proper container/bottle?	Yes / No
Sample containers intact?	Yes / No
Sufficient sample volume for indicated test?	Yes / No
All samples received within holding time?	Yes / No
Container/Temp Blank temperature in compliance?	Yes / No
Temperature(s) (°C):	Job C
Thermometer(s):	I Rle
Sample(s) received on ice?	Yes / No
Matrix/Matrices:	50:1
Cooler(s)/Kit(s):	
Date/Time sample(s) sent to storage:	8/4/25 09:30
Water – VOA vials have zero headspace?	Yes / No / No Vials
Water – pH acceptable upon receipt?	Yes / No / N/A
pH strip lot #: < 2	> 12 Other
pH adjusted (note adjustments below)?	> 12 Other Yes / No / N/A
pH adjusted by:	,
Login Notes:	

REPORT QUALIFIERS AND DEFINITIONS

- * Value exceeds Regulatory Limit (if MCL displayed)
- a Analyte is non-accredited
- B Analyte detected in the associated Method Blank above the Reporting Limit
- E Value above quantitation range
- H Analyzed outside of Holding Time
- J Analyte is present at an estimated concentration between the MDL and Report Limit
- NC Not Calculated
- ND Not Detected at the Reporting Limit
- O Sample amount is > 4 times amount spiked
- P Dual Column results percent difference > 40%
- R RPD above laboratory control limit
- S Spike Recovery outside laboratory control limits
- U Analyzed but not detected above the MDL
- V The Continuing Calibration Verification was outside of control criteria
- X Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.

Holland Laboratory Certifications¹

Agency	Туре	ID	Issued	Expires
Alabama	Drinking Water (Secondary)	42500	12/17/2024	12/31/2025
Colorado	UST		07/01/2025	06/30/2026
Connecticut	Drinking Water (Secondary)	PH-0155	12/10/2024	12/31/2026
Florida	NELAP (Primary)	E871106	07/01/2025	06/30/2026
Illinois	NELAP (Secondary)	200076	11/14/2024	12/31/2025
Indiana	Drinking Water (Secondary)	C-MI-08	12/31/2024	09/04/2026
Iowa	State Specific	403	09/18/2023	09/01/2025
Kansas	NELAP (Secondary)	E-10411	07/09/2024	07/31/2025
Kentucky	Waste Water	KY98004	12/20/2024	12/31/2025
Kentucky	UST	120474	06/24/2024	06/30/2025
Michigan	Drinking Water (Primary)	0022	12/19/2023	09/04/2026
Minnesota	NELAP (Secondary)	026-999-449	12/17/2024	12/31/2025
Missouri	Drinking Water (Secondary)	01262	11/14/2024	12/30/2027
New Jersey	NELAP (Secondary)	MI015	07/01/2024	6/30/2025
New York	NELAP (Secondary)	12128	04/01/2025	04/01/2026
North Dakota	State Specific	R-192	11/18/2024	06/30/2025
Ohio	Drinking Water (Secondary)	87783	06/26/2025	6/30/2026
Pennsylvania	NELAP (Secondary)	68-03827	06/14/2024	07/31/2025
Texas	NELAP (Secondary)	T104704494	02/12/2025	01/31/2026
USDA	Domestic CA	Soil-MI-007	02/06/2025	08/07/2026
USDA	Soil Import	525-23-62-77572	03/03/2023	03/03/2026
West Virginia	State Specific	355	06/07/2025	08/31/2026
Wisconsin	State Specific	399084510	08/15/2024	08/31/2025

^{1 -} Scope available upon request

ANALYST SUMMARY

Client: The Mannik & Smith Group, Inc. Work Order: HN2511422

Project: 11888_Glenfield

Sample Name: 11888 SB01 (1-2) **Date Collected:** 08/13/25

Laboratory Code: HN2511422-001 **Date Received:** 08/14/25

Sample Matrix: SOIL/SOLID

Analysis Method	Preparation Method	Container ID	Preparation Lot	Prepared By	Analysis Lot	Analyzed By
EPA 3550C		001-AC	2164278		3406747	Nicole Maleski
EPA 6020B	EPA 3050B	001-AC	2167684	Weston Kotecki	3414291	Stephanie Pierson
EPA 7471B	Method	001-AC	2167752	Maxx Richey	3416298	Maxx Richey
EPA 8081B		001-AD			3465999	Bill Carey
EPA 8082A		001-AD			3465999	Bill Carey
EPA 8151A		001-AD			3465999	Bill Carey
EPA 8260D	EPA 5035A	001-AA	2160747	Jonathan Vazquez	3424975	Nathan Jenkins
EPA 8270E		001-AD			3465999	Bill Carey
EPA 9056A	EPA 9056A	001-AC	2163330	Quoc Nguyen	3405747	Jessica Bacon

 Sample Name:
 11888 SB02 (3-4)
 Date Collected:
 08/13/25

 Laboratory Code:
 HN2511422-002
 Date Received:
 08/14/25

Sample Matrix: SOIL/SOLID

Analysis Method	Preparation Method	Container ID	Preparation Lot	Prepared By	Analysis Lot	Analyzed By
EPA 3550C		002-AC	2164278		3406747	Nicole Maleski
EPA 6020B	EPA 3050B	002-AC	2167684	Weston Kotecki	3414291	Stephanie Pierson
EPA 7471B	Method	002-AC	2167752	Maxx Richey	3416298	Maxx Richey
EPA 8081B		002-AD			3465999	Bill Carey
EPA 8082A		002-AD			3465999	Bill Carey
EPA 8151A		002-AD			3465999	Bill Carey
EPA 8260D	EPA 5035A	002-AA	2160747	Jonathan Vazquez	3424725	Nathan Jenkins
EPA 8270E		002-AD			3465999	Bill Carey
EPA 9056A	EPA 9056A	002-AC	2163330	Quoc Nguyen	3405747	Jessica Bacon

 Sample Name:
 11888 SB03 (5-6)
 Date Collected:
 08/13/25

 Laboratory Code:
 HN2511422-003
 Date Received:
 08/14/25

Sample Matrix: SOIL/SOLID

Analysis MethodPreparation MethodContainer IDPreparation LotPrepared ByAnalysis LotAnalysed ByEPA 3550C003-AC21642783406747Nicole Maleski

ANALYST SUMMARY

Client: The Mannik & Smith Group, Inc. Work Order: HN2511422

Project: 11888_Glenfield

Sample Name: 11888 SB03 (5-6) **Date Collected:** 08/13/25

Laboratory Code: HN2511422-003 **Date Received:** 08/14/25

Sample Matrix: SOIL/SOLID

Analysis Method	Preparation Method	Container ID	Preparation Lot	Prepared By	Analysis Lot	Analyzed By
EPA 6020B	EPA 3050B	003-AC	2167684	Weston Kotecki	3414291	Stephanie Pierson
EPA 7471B	Method	003-AC	2167752	Maxx Richey	3416298	Maxx Richey
EPA 8081B		003-AD			3465999	Bill Carey
EPA 8082A		003-AD			3465999	Bill Carey
EPA 8151A		003-AD			3465999	Bill Carey
EPA 8260D	EPA 5035A	003-AA	2160747	Jonathan Vazquez	3424725	Nathan Jenkins
EPA 8270E		003-AD			3465999	Bill Carey
EPA 9056A	EPA 9056A	003-AC	2163330	Quoc Nguyen	3405747	Jessica Bacon

Work Order: HN2511422

Client: The Mannik & Smith Group, Inc.

 Project:
 11888_Glenfield
 Date Collected:
 08/13/25 11:08

 Matrix:
 SOIL/SOLID
 Date Received:
 08/14/25 08:00

CLIENT ID: 11888 SB01 (1	-2)					Lab ID: HN2511422-001			
Analyte	Method	Results	Qual	Units	MRL	Dilution Factor		Date Extracted	
General Chemistry Parame	ters								
Percent Moisture	EPA 3550C	13.5		%	0.1	1	08/16/25 14:40	NA	
Chloride	EPA 9056A	60.9		mg/kg	11.6	1	08/16/25 01:12	08/15/25 16:37	
Metals									
Arsenic	EPA 6020B	5.10		mg/kg	3.57	10	08/19/25 23:32	08/19/25 09:35	
Barium	EPA 6020B	48.4		mg/kg	3.57	10	08/19/25 23:32	08/19/25 09:35	
Cadmium	EPA 6020B	ND		mg/kg	1.43	10	08/19/25 23:32	08/19/25 09:35	
Chromium	EPA 6020B	12.6		mg/kg	3.57	10	08/19/25 23:32	08/19/25 09:35	
Copper	EPA 6020B	26.6		mg/kg	3.57	10	08/19/25 23:32	08/19/25 09:35	
Lead	EPA 6020B	39.3		mg/kg	3.57	10	08/19/25 23:32	08/19/25 09:35	
Selenium	EPA 6020B	ND		mg/kg	3.57	10	08/19/25 23:32	08/19/25 09:35	
Silver	EPA 6020B	ND		mg/kg	3.57	10	08/19/25 23:32	08/19/25 09:35	
Zinc	EPA 6020B	64.2		mg/kg	7.15	10	08/19/25 23:32	08/19/25 09:35	
Mercury	EPA 7471B	0.0702		mg/kg	0.0200	1	08/20/25 10:24	08/20/25 08:19	
Subcontracted Parameters									
Subcontract Analysis	EPA 8081B	See attached.		-		1	09/05/25 08:34	NA	
Subcontract Analysis	EPA 8082A	See attached.		-		1	09/05/25 08:34	NA	
Subcontract Analysis	EPA 8151A	See attached.		-		1	09/05/25 08:34	NA	
Subcontract Analysis	EPA 8270E	See attached.		-		1	09/05/25 08:34	NA	
Volatile Organic Compound	ds by GC-MS								
1,1,1-Trichloroethane	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59	
1,1,2,2-Tetrachloroethane	EPA 8260D	ND	S	μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59	
1,1,2-Trichloro-1,2,2- trifluoroethane (Freon 113)	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59	
1,1,2-Trichloroethane	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59	
1,1-Dichloroethane	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59	
1,1-Dichloroethylene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59	
1,2,3-Trichlorobenzene	EPA 8260D	ND		μg/kg	135	1	08/22/25 05:38	08/14/25 14:59	
1,2,3-Trichloropropane	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59	
1,2,4-Trichlorobenzene	EPA 8260D	ND		μg/kg	135	1	08/22/25 05:38	08/14/25 14:59	
1,2,4-Trimethylbenzene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59	
1,2-Dibromo-3- chloropropane (DBCP)	EPA 8260D	ND		μg/kg	135	1	08/22/25 05:38	08/14/25 14:59	

The Mannik & Smith Group, Inc. **Client:**

Work Order: HN2511422 Project: 11888_Glenfield **Date Collected:** 08/13/25 11:08 **Date Received:** 08/14/25 08:00 SOIL/SOLID **Matrix:**

CLIENT ID: 11888 SB01 (1	1-2)					Lab ID:	HN2511422-00)1
						Dilution		Date
Analyte	Method	Results	Qual	Units	MRL	Factor	Analyzed	Extracted
1,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8260D	ND		µg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
1,2-Dichlorobenzene (o- Dichlorobenzene)	EPA 8260D	ND		µg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
1,2-Dichloroethane (Ethylene dichloride)	EPA 8260D	ND		µg/kg	135	1	08/22/25 05:38	08/14/25 14:59
1,2-Dichloropropane	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
1,3,5-Trimethylbenzene	EPA 8260D	ND		μg/kg	135	1	08/22/25 05:38	08/14/25 14:59
1,3-Dichlorobenzene (m- Dichlorobenzene)	EPA 8260D	ND		µg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
1,3-Dichloropropene	EPA 8260D	ND		μg/kg	80.9	1	08/22/25 05:38	08/14/25 14:59
1,4-Dichlorobenzene (p- Dichlorobenzene)	EPA 8260D	ND		µg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
2-Butanone (Methyl ethyl ketone, MEK)	EPA 8260D	ND		µg/kg	270	1	08/22/25 05:38	08/14/25 14:59
2-Hexanone	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
4-Methyl-2-pentanone (MIBK)	EPA 8260D	ND		µg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Acetone	EPA 8260D	ND		μg/kg	135	1	08/22/25 05:38	08/14/25 14:59
Benzene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Bromochloromethane	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Bromodichloromethane	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Bromoform	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Carbon disulfide	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Carbon tetrachloride	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Chlorobenzene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Chlorodibromomethane	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Chloroethane (Ethyl chloride)	EPA 8260D	ND		µg/kg	135	1	08/22/25 05:38	08/14/25 14:59
Chloroform	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
cis & trans-1,2- Dichloroethene	EPA 8260D	ND		µg/kg	80.9	1	08/22/25 05:38	08/14/25 14:59
cis-1,2-Dichloroethylene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
cis-1,3-Dichloropropene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Cyclohexane	EPA 8260D	ND		μg/kg	135	1	08/22/25 05:38	08/14/25 14:59
Dichlorodifluoromethane (Freon-12)	EPA 8260D	ND	S	μg/kg	135	1	08/22/25 05:38	08/14/25 14:59
Ethylbenzene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Isopropylbenzene	EPA 8260D	ND		µg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59

The Mannik & Smith Group, Inc. **Client:**

Work Order: HN2511422 **Project:** 11888_Glenfield **Date Collected:** 08/13/25 11:08 **Date Received:** 08/14/25 08:00 **Matrix:** SOIL/SOLID

CLIENT ID: 11888 SB01 (1-	2)					Lab ID	: HN2511422-00)1
Analyte	Method	Results	Qual	Units	MRL	Dilution Factor		Date Extracted
m+p-Xylene	EPA 8260D	ND		μg/kg	80.9	1	08/22/25 05:38	08/14/25 14:59
Methyl acetate	EPA 8260D	ND		μg/kg	337	1	08/22/25 05:38	08/14/25 14:59
Methyl bromide (Bromomethane)	EPA 8260D	ND		μg/kg	135	1	08/22/25 05:38	08/14/25 14:59
Methyl chloride (Chloromethane)	EPA 8260D	ND	S	µg/kg	135	1	08/22/25 05:38	08/14/25 14:59
Methyl tert-butyl ether (MTBE)	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Methylcyclohexane	EPA 8260D	ND		µg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Methylene chloride (Dichloromethane)	EPA 8260D	ND		μg/kg	337	1	08/22/25 05:38	08/14/25 14:59
o-Xylene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Styrene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Tetrachloroethylene (Perchloroethylene)	EPA 8260D	ND	S	μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Toluene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Total Xylene	EPA 8260D	ND		μg/kg	121	1	08/22/25 05:38	08/14/25 14:59
trans-1,2-Dichloroethylene	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
trans-1,3- Dichloropropylene	EPA 8260D	ND		µg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Trichloroethene (Trichloroethylene)	EPA 8260D	ND	S	μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	EPA 8260D	ND		μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Vinyl chloride (Chloroethene)	EPA 8260D	ND	S	μg/kg	40.4	1	08/22/25 05:38	08/14/25 14:59
Surr: 1,2-Dichloroethane-d4	EPA 8260D	100		%REC	80-120	1	08/22/25 05:38	08/14/25 14:59
Surr: 4-Bromofluorobenzene	EPA 8260D	99.6		%REC	80-120	1	08/22/25 05:38	08/14/25 14:59
Surr: Dibromofluoromethane	EPA 8260D	93.6		%REC	80-120	1	08/22/25 05:38	08/14/25 14:59
Surr: Toluene-d8	EPA 8260D	99.2		%REC	80-120	1	08/22/25 05:38	08/14/25 14:59

Work Order: HN2511422

Client: The Mannik & Smith Group, Inc.

 Project:
 11888_Glenfield
 Date Collected:
 08/13/25 11:25

 Matrix:
 SOIL/SOLID
 Date Received:
 08/14/25 08:00

CLIENT ID: 11888 SB02 (3-	-4)				Lab ID: HN2511422-002			
Analyte	Method	Results	Qual Units	MRL	Dilutior Factor		Date Extracted	
General Chemistry Parame	ters							
Percent Moisture	EPA 3550C	11.1	%	0.1	1	08/16/25 14:40	NA	
Chloride	EPA 9056A	111	mg/kg	11.3	1	08/16/25 01:21	08/15/25 16:37	
Metals								
Arsenic	EPA 6020B	4.42	mg/kg	3.27	10	08/19/25 23:33	08/19/25 09:35	
Barium	EPA 6020B	41.2	mg/kg	3.27	10	08/19/25 23:33	08/19/25 09:35	
Cadmium	EPA 6020B	ND	mg/kg	1.31	10	08/19/25 23:33	08/19/25 09:35	
Chromium	EPA 6020B	13.8	mg/kg	3.27	10	08/19/25 23:33	08/19/25 09:35	
Copper	EPA 6020B	17.1	mg/kg	3.27	10	08/19/25 23:33	08/19/25 09:35	
Lead	EPA 6020B	44.1	mg/kg	3.27	10	08/19/25 23:33	08/19/25 09:35	
Selenium	EPA 6020B	ND	mg/kg	3.27	10	08/19/25 23:33	08/19/25 09:35	
Silver	EPA 6020B	ND	mg/kg	3.27	10	08/19/25 23:33	08/19/25 09:35	
Zinc	EPA 6020B	71.7	mg/kg	6.53	10	08/19/25 23:33	08/19/25 09:35	
Mercury	EPA 7471B	0.0662	mg/kg	0.0200	1	08/20/25 10:25	08/20/25 08:19	
Subcontracted Parameters								
Subcontract Analysis	EPA 8081B	See attached.	-		1	09/05/25 08:34	NA	
Subcontract Analysis	EPA 8082A	See attached.	-		1	09/05/25 08:34	NA	
Subcontract Analysis	EPA 8151A	See attached.	-		1	09/05/25 08:34	NA	
Subcontract Analysis	EPA 8270E	See attached.	-		1	09/05/25 08:34	NA	
Volatile Organic Compound	ls by GC-MS							
1,1,1-Trichloroethane	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59	
1,1,2,2-Tetrachloroethane	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59	
1,1,2-Trichloro-1,2,2- trifluoroethane (Freon 113)	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59	
1,1,2-Trichloroethane	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59	
1,1-Dichloroethane	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59	
1,1-Dichloroethylene	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59	
1,2,3-Trichlorobenzene	EPA 8260D	ND	μg/kg	128	1	08/21/25 19:45	08/14/25 14:59	
1,2,3-Trichloropropane	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59	
1,2,4-Trichlorobenzene	EPA 8260D	ND	μg/kg	128	1	08/21/25 19:45	08/14/25 14:59	
1,2,4-Trimethylbenzene	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59	
1,2-Dibromo-3- chloropropane (DBCP)	EPA 8260D	ND	μg/kg	128	1	08/21/25 19:45	08/14/25 14:59	

The Mannik & Smith Group, Inc. **Client:**

Work Order: HN2511422 Project: 11888_Glenfield **Date Collected:** 08/13/25 11:25 **Date Received:** 08/14/25 08:00 SOIL/SOLID **Matrix:**

CLIENT ID: 11888 SB02 (3	3-4)					Lab ID:	HN2511422-00)2
						Dilution		Date
Analyte	Method	Results	Qual	Units	MRL	Factor	Analyzed	Extracted
1,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
1,2-Dichlorobenzene (o- Dichlorobenzene)	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
1,2-Dichloroethane (Ethylene dichloride)	EPA 8260D	ND		µg/kg	128	1	08/21/25 19:45	08/14/25 14:59
1,2-Dichloropropane	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
1,3,5-Trimethylbenzene	EPA 8260D	ND		µg/kg	128	1	08/21/25 19:45	08/14/25 14:59
1,3-Dichlorobenzene (m- Dichlorobenzene)	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
1,3-Dichloropropene	EPA 8260D	ND		µg/kg	76.7	1	08/21/25 19:45	08/14/25 14:59
1,4-Dichlorobenzene (p- Dichlorobenzene)	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
2-Butanone (Methyl ethyl ketone, MEK)	EPA 8260D	ND		μg/kg	256	1	08/21/25 19:45	08/14/25 14:59
2-Hexanone	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
4-Methyl-2-pentanone (MIBK)	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Acetone	EPA 8260D	ND		µg/kg	128	1	08/21/25 19:45	08/14/25 14:59
Benzene	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Bromochloromethane	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Bromodichloromethane	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Bromoform	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Carbon disulfide	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Carbon tetrachloride	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Chlorobenzene	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Chlorodibromomethane	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Chloroethane (Ethyl chloride)	EPA 8260D	ND		μg/kg	128	1	08/21/25 19:45	08/14/25 14:59
Chloroform	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
cis & trans-1,2- Dichloroethene	EPA 8260D	ND		μg/kg	76.7	1	08/21/25 19:45	08/14/25 14:59
cis-1,2-Dichloroethylene	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
cis-1,3-Dichloropropene	EPA 8260D	ND		µg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Cyclohexane	EPA 8260D	ND		μg/kg	128	1	08/21/25 19:45	08/14/25 14:59
Dichlorodifluoromethane (Freon-12)	EPA 8260D	ND		μg/kg	128	1	08/21/25 19:45	08/14/25 14:59
Ethylbenzene	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59
Isopropylbenzene	EPA 8260D	ND		μg/kg	38.3	1	08/21/25 19:45	08/14/25 14:59

The Mannik & Smith Group, Inc. **Client:**

Work Order: HN2511422 **Project:** 11888_Glenfield **Date Collected:** 08/13/25 11:25 **Date Received:** 08/14/25 08:00 **Matrix:** SOIL/SOLID

CLIENT ID: 11888 SB02 (3-	4)				Lab ID: HN2511422-002					
Analyte	Method	Results	Qual Units	MRL	Dilution Factor		Date Extracted			
m+p-Xylene	EPA 8260D	ND	μg/kg	76.7	1	08/21/25 19:45 08	/14/25 14:59			
Methyl acetate	EPA 8260D	ND	μg/kg	320	1	08/21/25 19:45 08	/14/25 14:59			
Methyl bromide (Bromomethane)	EPA 8260D	ND	μg/kg	128	1	08/21/25 19:45 08	/14/25 14:59			
Methyl chloride (Chloromethane)	EPA 8260D	ND	µg/kg	128	1	08/21/25 19:45 08	/14/25 14:59			
Methyl tert-butyl ether (MTBE)	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Methylcyclohexane	EPA 8260D	ND	$\mu g/kg$	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Methylene chloride (Dichloromethane)	EPA 8260D	ND	μg/kg	320	1	08/21/25 19:45 08	/14/25 14:59			
o-Xylene	EPA 8260D	ND	$\mu g/kg$	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Styrene	EPA 8260D	ND	µg/kg	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Tetrachloroethylene (Perchloroethylene)	EPA 8260D	ND	µg/kg	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Toluene	EPA 8260D	ND	$\mu g/kg$	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Total Xylene	EPA 8260D	ND	$\mu g/kg$	115	1	08/21/25 19:45 08	/14/25 14:59			
trans-1,2-Dichloroethylene	EPA 8260D	ND	µg/kg	38.3	1	08/21/25 19:45 08	/14/25 14:59			
trans-1,3- Dichloropropylene	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Trichloroethene (Trichloroethylene)	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Vinyl chloride (Chloroethene)	EPA 8260D	ND	μg/kg	38.3	1	08/21/25 19:45 08	/14/25 14:59			
Surr: 1,2-Dichloroethane-d4	EPA 8260D	103	%REC	80-120	1	08/21/25 19:45 08	/14/25 14:59			
Surr: 4-Bromofluorobenzene	EPA 8260D	97.5	%REC	80-120	1	08/21/25 19:45 08	/14/25 14:59			
Surr: Dibromofluoromethane	EPA 8260D	96.0	%REC	80-120	1	08/21/25 19:45 08	/14/25 14:59			
Surr: Toluene-d8	EPA 8260D	99.4	%REC	80-120	1	08/21/25 19:45 08	/14/25 14:59			

Work Order: HN2511422

Client: The Mannik & Smith Group, Inc.

 Project:
 11888_Glenfield
 Date Collected:
 08/13/25 11:38

 Matrix:
 SOIL/SOLID
 Date Received:
 08/14/25 08:00

Matrix: SOIL/S	OLID				ate Kecei	veu: 08/14/23 0			
CLIENT ID: 11888 SB03 (5	[-6]			Lab ID: HN2511422-003					
Analyte	Method	Results	Qual Units	MRL	Dilution Factor		Date Extracted		
General Chemistry Parame	eters								
Percent Moisture	EPA 3550C	19.3	%	0.1	1	08/16/25 14:40	NA		
Chloride	EPA 9056A	17.0	mg/kg	12.3	1	08/16/25 01:31	08/15/25 16:37		
Metals									
Arsenic	EPA 6020B	8.32	mg/kg	3.81	10	08/19/25 23:35	08/19/25 09:35		
Barium	EPA 6020B	85.0	mg/kg	3.81	10	08/19/25 23:35	08/19/25 09:35		
Cadmium	EPA 6020B	ND	mg/kg	1.52	10	08/19/25 23:35	08/19/25 09:35		
Chromium	EPA 6020B	24.5	mg/kg	3.81	10	08/19/25 23:35	08/19/25 09:35		
Copper	EPA 6020B	27.8	mg/kg	3.81	10	08/19/25 23:35	08/19/25 09:35		
Lead	EPA 6020B	12.9	mg/kg	3.81	10	08/19/25 23:35	08/19/25 09:35		
Selenium	EPA 6020B	ND	mg/kg	3.81	10	08/19/25 23:35	08/19/25 09:35		
Silver	EPA 6020B	ND	mg/kg	3.81	10	08/19/25 23:35	08/19/25 09:35		
Zinc	EPA 6020B	65.6	mg/kg	7.61	10	08/19/25 23:35	08/19/25 09:35		
Mercury	EPA 7471B	0.0630	mg/kg	0.0238	1	08/20/25 10:27	08/20/25 08:19		
Subcontracted Parameters									
Subcontract Analysis	EPA 8081B	See attached.	-		1	09/05/25 08:34	NA		
Subcontract Analysis	EPA 8082A	See attached.	-		1	09/05/25 08:34	NA		
Subcontract Analysis	EPA 8151A	See attached.	-		1	09/05/25 08:34	NA		
Subcontract Analysis	EPA 8270E	See attached.	-		1	09/05/25 08:34	NA		
Volatile Organic Compound	ds by GC-MS								
1,1,1-Trichloroethane	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59		
1,1,2,2-Tetrachloroethane	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59		
1,1,2-Trichloro-1,2,2- trifluoroethane (Freon 113)	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59		
1,1,2-Trichloroethane	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59		
1,1-Dichloroethane	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59		
1,1-Dichloroethylene	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59		
1,2,3-Trichlorobenzene	EPA 8260D	ND	μg/kg	154	1	08/21/25 20:01	08/14/25 14:59		
1,2,3-Trichloropropane	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59		
1,2,4-Trichlorobenzene	EPA 8260D	ND	μg/kg	154	1	08/21/25 20:01	08/14/25 14:59		
1,2,4-Trimethylbenzene	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59		
1,2-Dibromo-3- chloropropane (DBCP)	EPA 8260D	ND	μg/kg	154	1	08/21/25 20:01	08/14/25 14:59		

The Mannik & Smith Group, Inc. **Client:**

Work Order: HN2511422 Project: 11888_Glenfield **Date Collected:** 08/13/25 11:38 **Date Received:** 08/14/25 08:00 SOIL/SOLID **Matrix:**

CLIENT ID: 11888 SB03 (5	5-6)					Lab ID:	HN2511422-00	03
						Dilution		Date
Analyte	Method	Results	Qual	Units	MRL	Factor	Analyzed	Extracted
1,2-Dibromoethane (EDB, Ethylene dibromide)	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
1,2-Dichlorobenzene (o- Dichlorobenzene)	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
1,2-Dichloroethane (Ethylene dichloride)	EPA 8260D	ND		μg/kg	154	1	08/21/25 20:01	08/14/25 14:59
1,2-Dichloropropane	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
1,3,5-Trimethylbenzene	EPA 8260D	ND		μg/kg	154	1	08/21/25 20:01	08/14/25 14:59
1,3-Dichlorobenzene (m- Dichlorobenzene)	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
1,3-Dichloropropene	EPA 8260D	ND		µg/kg	92.4	1	08/21/25 20:01	08/14/25 14:59
1,4-Dichlorobenzene (p- Dichlorobenzene)	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
2-Butanone (Methyl ethyl ketone, MEK)	EPA 8260D	ND		μg/kg	308	1	08/21/25 20:01	08/14/25 14:59
2-Hexanone	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
4-Methyl-2-pentanone (MIBK)	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Acetone	EPA 8260D	ND		μg/kg	154	1	08/21/25 20:01	08/14/25 14:59
Benzene	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Bromochloromethane	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Bromodichloromethane	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Bromoform	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Carbon disulfide	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Carbon tetrachloride	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Chlorobenzene	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Chlorodibromomethane	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Chloroethane (Ethyl chloride)	EPA 8260D	ND		μg/kg	154	1	08/21/25 20:01	08/14/25 14:59
Chloroform	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
cis & trans-1,2- Dichloroethene	EPA 8260D	ND		μg/kg	92.4	1	08/21/25 20:01	08/14/25 14:59
cis-1,2-Dichloroethylene	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
cis-1,3-Dichloropropene	EPA 8260D	ND		µg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Cyclohexane	EPA 8260D	ND		μg/kg	154	1	08/21/25 20:01	08/14/25 14:59
Dichlorodifluoromethane (Freon-12)	EPA 8260D	ND		μg/kg	154	1	08/21/25 20:01	08/14/25 14:59
Ethylbenzene	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59
Isopropylbenzene	EPA 8260D	ND		μg/kg	46.2	1	08/21/25 20:01	08/14/25 14:59

The Mannik & Smith Group, Inc. **Client:**

Work Order: HN2511422 **Project:** 11888_Glenfield **Date Collected:** 08/13/25 11:38 **Date Received:** 08/14/25 08:00 **Matrix:** SOIL/SOLID

CLIENT ID: 11888 SB03 (5-	6)				Lab ID: HN2511422-003					
Analyte	Method	Results	Qual Units	MRL	Dilution Factor					
m+p-Xylene	EPA 8260D	ND	μg/kg	92.4	1	08/21/25 20:01 08/14/25	5 14:59			
Methyl acetate	EPA 8260D	ND	μg/kg	385	1	08/21/25 20:01 08/14/25	5 14:59			
Methyl bromide (Bromomethane)	EPA 8260D	ND	μg/kg	154	1	08/21/25 20:01 08/14/25	5 14:59			
Methyl chloride (Chloromethane)	EPA 8260D	ND	μg/kg	154	1	08/21/25 20:01 08/14/25	5 14:59			
Methyl tert-butyl ether (MTBE)	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Methylcyclohexane	EPA 8260D	ND	$\mu g/kg$	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Methylene chloride (Dichloromethane)	EPA 8260D	ND	μg/kg	385	1	08/21/25 20:01 08/14/25	5 14:59			
o-Xylene	EPA 8260D	ND	$\mu g/kg$	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Styrene	EPA 8260D	ND	µg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Tetrachloroethylene (Perchloroethylene)	EPA 8260D	ND	µg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Toluene	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Total Xylene	EPA 8260D	ND	µg/kg	138	1	08/21/25 20:01 08/14/25	5 14:59			
trans-1,2-Dichloroethylene	EPA 8260D	ND	µg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
trans-1,3- Dichloropropylene	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Trichloroethene (Trichloroethylene)	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Trichlorofluoromethane (Fluorotrichloromethane, Freon 11)	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Vinyl chloride (Chloroethene)	EPA 8260D	ND	μg/kg	46.2	1	08/21/25 20:01 08/14/25	5 14:59			
Surr: 1,2-Dichloroethane-d4	EPA 8260D	104	%REC	80-120	1	08/21/25 20:01 08/14/25	5 14:59			
Surr: 4-Bromofluorobenzene	EPA 8260D	100	%REC	80-120	1	08/21/25 20:01 08/14/25	5 14:59			
Surr: Dibromofluoromethane	EPA 8260D	95.3	%REC	80-120	1	08/21/25 20:01 08/14/25	5 14:59			
Surr: Toluene-d8	EPA 8260D	98.6	%REC	80-120	1	08/21/25 20:01 08/14/25	5 14:59			

Service Request No:R2510162

Bill Carey ALS Environmental - Holland 3352 128th Avenue Holland, MI 49424

Laboratory Results for: 11888_Glenfield

Dear Bill,

Enclosed are the results of the sample(s) submitted to our laboratory August 20, 2025 For your reference, these analyses have been assigned our service request number **R2510162**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7476. You may also contact me via email at Chris.Leavy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Christopher Leavy Project Manager

ADDRESS

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:ALS Environmental - USService Request: R2510162Project:11888 GlenfieldDate Received: 08/20/2025

Sample Matrix: Soil

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Three soil samples were received for analysis at ALS Environmental on 08/20/2025. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270E, 891243: The reporting limit is elevated for one or more analytes. The sample extract was diluted prior to instrumental analysis due to relatively high levels of non-target background components. The extract was highly colored and viscous, which indicated the need to perform a dilution prior to injection into the instrument. The result(s) are flagged to indicate the matrix interference.

Method 8270E, 08/25/2025: The upper control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). The field samples analyzed in this sequence did not contain the analyte(s) in question above the Method Reporting Limit (MRL). Since the exceedance equates to a potential high bias, the data quality was not significantly affected and no further corrective action was taken.

Method 8270E: The Method Reporting Limit (MRL) was elevated due to less than optimal sample mass (15g) used in the microwave preparation process. The nature of the sample necessitated using less mass of sample to avoid overheating. Overheating causes the extraction solvent to vent out of the vessel and may cause damage to the microwave vessels.

Semivoa GC:

Method 8081B, 08/27/2025: The control limits were exceeded for analytes in the Continuing Calibration Verification (CCV). The QC failure was most likely due to the composition of the sample(s) immediately preceding the failing CCV. In order to protect the integrity of the instrument, no further corrective action was taken. Results should be considered estimated.

General Chemistry:

No significant anomalies were noted with this analysis.

7.7

	L Wa		
pproved by		Date	11/19/2025

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: 11888 SB01 (1-2)	Lab ID: R2510162-001						
Analyte	Results	Flag	MDL	MRL	Units	Method	
4,4'-DDD	4.5		0.97	1.9	ug/Kg	8081B	
4,4'-DDE	53		0.97	1.9	ug/Kg	8081B	
4,4'-DDT	17		0.97	1.9	ug/Kg	8081B	
alpha-Chlordane	10	Р	0.97	1.9	ug/Kg	8081B	
Benz(a)anthracene	360	J	290	1900	ug/Kg	8270E	
Benzo(b)fluoranthene	490	J	320	1900	ug/Kg	8270E	
Chrysene	390	J	280	1900	ug/Kg	8270E	
Dieldrin	2.1		0.97	1.9	ug/Kg	8081B	
Fluoranthene	750	J	480	1900	ug/Kg	8270E	
gamma-Chlordane	8.0		0.97	1.9	ug/Kg	8081B	
Heptachlor Epoxide	2.0		0.97	1.9	ug/Kg	8081B	
Phenanthrene	290	J	270	1900	ug/Kg	8270E	
Pyrene	640	J	320	1900	ug/Kg	8270E	
Total Solids	86.5				Percent	ALS SOP	
CLIENT ID: 11888 SB02 (3-4)	Lab ID: R2510162-002						
Analyte	Results	Flag	MDL	MRL	Units	Method	
4,4'-DDD	5.3		0.94	1.9	ug/Kg	8081B	
4,4'-DDE	43		0.94	1.9	ug/Kg	8081B	
4,4'-DDT	7.0	Р	0.94	1.9	ug/Kg	8081B	
alpha-Chlordane	2.6	Р	0.94	1.9	ug/Kg	8081B	
Benz(a)anthracene	130	J	55	370	ug/Kg	8270E	
Benzo(a)pyrene	160	J	98	370	ug/Kg	8270E	
Benzo(b)fluoranthene	200	J	62	370	ug/Kg	8270E	
Benzo(g,h,i)perylene	120	J	85	370	ug/Kg	8270E	
Benzo(k)fluoranthene	75	J	60	370	ug/Kg	8270E	
Chrysene	150	J	54	370	ug/Kg	8270E	
Fluoranthene	280	J	93	370	ug/Kg	8270E	
Phenanthrene	140	J	52	370	ug/Kg	8270E	
Pyrene	230	J	62	370	ug/Kg	8270E	
Total Solids	88.9				Percent	ALS SOP	
CLIENT ID: 11888 SB03 (5-6)		Lab	ID: R2510	0162-003			
Analyte	Results	Flag	MDL	MRL	Units	Method	
Total Solids	80.7				Percent	ALS SOP	

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: ALS Environmental - US Service Request:R2510162

Project: 11888_Glenfield

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R2510162-001	11888 SB01 (1-2)	8/13/2025	1108
R2510162-002	11888 SB02 (3-4)	8/13/2025	1125
R2510162-003	11888 SB03 (5-6)	8/13/2025	1138

ALS Group USA, Corp.3352 128th Ave Holland Michigan 49424 United States
T+1 616 399 6070 | F

			Sub	contract Chain o	f Custody	_			_		_				
SAMPLING	STATE:			8"				С	OC ID	: HN25	11422	2			
	mental TEL: +1 585 288 5380 1, Building 300, Suite 360 FAX				Due Date: 08/29 Analysis Report Electronic Data	Forma		tandard	– Level	11					
	Customer Information			Project Information			F	arame	eter/M	lethod	Reque	st for	Analys	is	
Purchase Order	'		Project Name	11888_Glenfield		Α	EPA 80	818-3546	S (INT	SUB)					
Work Order	HN2511422		•			В	EPA 8082A-3546-S (INT SUB)								
Company Name	Holland - Environmental	***********	Bill To Company	Holland - Environmental		С	EPA 81	51A-S (Iñ	VT SUB)						
Send Report To	Bill Carey		Inv Attn	Accounts Payable		D	EPA 8270E-TCL-3546-S (INT SUB)								
Address	3352 128th Ave	128th Ave		3352 128th Ave		E	E								_
		· · · ·				F									
City/State/Zip	Holland Michigan 49424		City/State/Zip	Holland Michigan 49424		G						_			
Phone	+1 616 399 6070		Phone	+1 616 399 6070		Н									
Fax			Fax			ī									
Email Address	bill.carey@alsglobal.com					J									
ALS Sample ID	Client Samp	le ID	Matrix	Collection Date	Bottle	А	В	С	D	E	F	G	н	ı	Т
HN2511422-001	11888 SB01	(1-2)	Soil/Solid	08/13/2025 11:08	001-AD	х	x	х	×						+
HN2511422-002	11888 SB02	(3-4)	Soil/Solid	08/13/2025 11:25	002-AD	х	×	х	х						士
HN2511422-003	11888 SB03	(5-6)	Soil/Solid	08/13/2025 11:38	003-AD	х	х	х	х						
Relinqui	ished by	Date Time	Rec	eived by	Date Time		Coole	r ID's							
Relinqui	ished by	Date Time	Rec	eived by	Date Time										
Sampl	led by	- Uf	emm neww	S102/8 mul	3 9.20										

Page 1 of 2

Cooler Receipt and Preservation Check Form

Project/Client				Folde	r Number_			·	_	
Cooler received on 812	0125	by: <u></u>	<u>M</u>		COURIER	: ALS	UPS FEI	VELO	CITY CLIEN	Т
1 Were Custody seals	on outside of cool	er?		Y(N)	5a Did	VOA vi	als have sig* I	ubbles?		Y N (NA)
2 Custody papers prop	erly completed (i	nk, sign	ned)?	Y) N	5b Sig*	bubbles	: Alk? Y	N (NA)	Sulfide?	Y N (NA)
3 Did all bottles arrive in	n good condition	(unbro	ken)?	YN	6 Whe	re did th	e bottles origi	nate?	ALS/ROC (LIENT
4 Circle: Wet Ice Dr	y Ice Gel packs	pre	sent?	Ϋ́Ν			ceived as:	···	core 5035set	(NA)
8. Temperature Readings	Date: 8\2	0125	Time	: 10:01		: IR#12	(IR#11)	From:	Temp Blank (Sample Bottle
Temp (°C)	14.7		4.	5	5.5	Ι	$\overline{}$			
Within 0-6°C?	(Y) N		(8)		(Y) N	Y	N Y	N	YN	YN
If <0°C, were samples fro	zen? Y N		Y	N	Ϋ́N	Y	N Y	N	YN	YN
If out of Temperature	, note packing/id	e cond	lition:		Ice me	·	Poorly Packed			ne Day Rule
&Client Approval to I	_						at drop-off		•	————
All samples held in stora	ge location:	5M	<u></u>	by RM	on 8\2	at	12:16		· · · · · · · · · · · · · · · · · · ·	
5035 samples placed in s		741		by	on <u>uz</u>	at at		48 hours of	sampling?	N
Cooler Breakdown/Pres	ervation Check*	i. Dat	e S	lantas	Time:			y: UU	1962 and Consumer	Haraga Maria Patendara Malife
9. Were all bottle	labels complete	. Dat (i.e. an:	alysis.	preservation	on, etc.)?	<u>// }</u>	ES) NO	y. <u>/</u>		
10 Did all bottle la	abels and tags agi	ee with	n custo	dy papers?)	6	ES NO			
11. Were correct c	ontainers used fo	r the te	sts ind	icated?		0	NO NO	_		
12. Were 5035 via	is acceptable (no	extra la	abels,	not leaking)?	3	TES NO	(VA)		
	metals filtered i						YES NO (<u>N/A)</u>		_
14. Air Samples: (pH Lot of test	Cassettes / Tubes Reagent	Prese				7		Tedlar® Bag		2
paper	Reagent	Yes	No	Lot Rece	eivea	Exp	Sample ID Adjusted	Vol. Added	Lot Added	Final
≥12 puper	11.011	1.05		 		ı	Aujusteu	Audeu		
	i NaOH					+				pН
	NaOH HNO:		 	 						pH
≤2	HNO ₃									pH
<u>≤2</u> <u>≤2</u>	HNO ₃ H ₂ SO ₄									pH
≤2 <2 <4	HNO ₃ H ₂ SO ₄ NaHSO ₄			No=Notif	v for 3day					pH
≤2 ≤2 <4 5-9	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest			No=Notif	<u> </u>					pH
≤2 ≤2 <4 5-9 Residual	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN,				ct PM to add					pH
≤2 ≤2 <4 5-9 Residual Chlorine	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,			If +, conta Na ₂ S ₂ O ₃ (6	ct PM to add					pH
≤2 ≤2 <4 5-9 Residual	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522			If +, conta Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608,					pH
≤2	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃			If +, conta Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608,		**VOAc and 1	664 Not to be to	ssted before analysis	
≤2 ≤2 <4 5-9 Residual Chlorine	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	- **	**	If +, conta Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608,				ested before analysi	S.
≤2 ≤2 <4 5-9 Residual Chlorine	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	**		If +, conta Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608,		Otherwise, all		nples with chemica	S.
≤2	HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate HCl	l		If +, conta Na ₂ S ₂ O ₃ (6	ct PM to add 525, 608,		Otherwise, all	oottles of all san	nples with chemica	S.

HPROD	BULK
HTR	FLDT
SUB	HGFB
ALS	LL3541

Labels secondary reviewed by:_

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

P:\INTRANET\QAQC\Forms Controlled\Cooler Receipt r21.doc

05/17/2024

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- Ε Organics- Concentration has exceeded the calibration range for that specific analysis.
- Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- Spike was diluted out.

P:\INTRANET\QAQC\Forms Controlled\QUALIF_routine rev 8.doc

- +Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- Ν Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- Concentration >40% difference between the two P GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Accreditations1

NELAP States	
Florida ID # E87674	
New Hampshire ID # 2941	
New York ID # 10145	
Pennsylvania ID# 68-786	
Texas ID#T104704581	
Virginia #460167	

Non-NELAP States
Connecticut ID #PH0556
Delaware Approved
Maine ID #NY01587
North Carolina #36701
North Carolina #676
Rhode Island LAO00333

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory. To verify NH accredited analytes, go to https://www4.des.state.nh.us/CertifiedLabs/Certified-Method.aspx.

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Client: ALS Environmental - US

Project: 11888_Glenfield

Service Request: R2510162

Non-Certified Analytes

Certifying Agency: New York Department of Health

Method	Matrix	Analyte
8270E	Soil	1-Methylnaphthalene
ALS SOP	Soil	Total Solids

Analyst Summary report

Client: ALS Environmental - US

Project: 11888_Glenfield/

 Sample Name:
 11888 SB01 (1-2)
 Date Collected:
 08/13/25

 Lab Code:
 R2510162-001
 Date Received:
 08/20/25

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

8081B JVANHEYNINGEN AFELSER
8082A JVANHEYNINGEN AFELSER
8151A JVANHEYNINGEN AFELSER
8270E JVANHEYNINGEN AMOSES
ALS SOP CKUTZER

 Sample Name:
 11888 SB02 (3-4)
 Date Collected: 08/13/25

 Lab Code:
 R2510162-002
 Date Received: 08/20/25

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

8082A	JVANHEYNINGEN	AFELSER
8151A	JVANHEYNINGEN	AFELSER
8270E	JVANHEYNINGEN	AMOSES
ALS SOP		CKUTZER

 Sample Name:
 11888 SB03 (5-6)
 Date Collected:
 08/13/25

 Lab Code:
 R2510162-003
 Date Received:
 08/20/25

Sample Matrix: Soil

Analysis Method Extracted/Digested By Analyzed By

8081BJVANHEYNINGENAFELSER8082AJVANHEYNINGENAFELSER8151AJVANHEYNINGENAFELSER8270EJVANHEYNINGENAMOSESALS SOPCKUTZER

Service Request: R2510162

PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

INORGANIC

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7 / 200.8	200.2
6010D	3005A/3010A
6020B	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-N-2016	SM 4500-CN-G and
Amenable and Residual	SM 4500-CN-B,C-2016
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation					
	Method					
6010D	3050B					
6010D TCLP (1311) extract	3005A/3010A					
6010D SPLP (1312) extract	3005A/3010A					
7199	3060A					
300.0 Anions/ 350.1/ 353.2/	DI extraction					
SM 2320B/ SM 5210B/						
9056A Anions						
For analytical methods not listed, the preparation method is the same as the analytical method reference.						

ORGANIC

Preparation Methods for Organic methods are listed in the header of the Results pages.

Regarding "Bulk/5035A":

For soil/solid samples submitted in soil jars for Volatiles analysis, the prep method is listed as "Bulk/5035A". The lab follows the closed-system EPA 5035A protocols once the sample is transferred to a sealed vial, but collection in bulk in soil jars does not follow the collection protocols listed in EPA 5035A. In accordance with the NYSDOH technical notice of October 2012, all results or reporting limits <200 ug/kg are to be considered estimated due to potential low bias.

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: ALS Environmental - US

Project: 11888_Glenfield **Date Collected:** 08/13/25 11:08

Sample Matrix: Soil Date Received: 08/20/25 09:30

 Sample Name:
 11888 SB01 (1-2)
 Units: ug/Kg

 Lab Code:
 R2510162-001
 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

1.2.4.5.Tetrachlorobenzene	Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2-Methylnaphthalene	1,2,4,5-Tetrachlorobenzene	420 U	1900	420	5	08/26/25 01:46	8/22/25	
Acenaphthene 360 U 1900 360 S 5 08/26/25 01:46 8/22/25 Acenaphtylene 390 U 1900 390 S 08/26/25 01:46 8/22/25 Anthracene 360 J 1900 320 S 08/26/25 01:46 8/22/25 Benzo(a)pyrene 510 U 1900 510 S 08/26/25 01:46 8/22/25 Benzo(b)fluoranthene 490 J 1900 320 S 08/26/25 01:46 8/22/25 Benzo(s),fluoranthene 440 U 1900 320 S 08/26/25 01:46 8/22/25 I.4-Dichlorobenzene 320 U 1900 320 S 08/26/25 01:46 8/22/25 Benzo(s),fluoranthene 310 U 1900 320 S 08/26/25 01:46 8/22/25 Benzo(s),fluoranthene 310 U 1900 320 S 08/26/25 01:46 8/22/25 Benzo(s),fluoranthene 310 U 1900 320 S 08/26/25 01:46 8/22/25 Benzo(s),fluoranthene 390 J 1900 30 S 08/26/25 01:46 8/22/25 Chrysene 390	1-Methylnaphthalene	350 U	1900	350	5	08/26/25 01:46	8/22/25	
Acenaphthylene 390 U 1900 390 5 0.826/25 01:46 8/22/25 Anthracene 360 J 1900 320 S 5 0.826/25 01:46 8/22/25 Benzo(a)anthracene 360 J 1900 290 5 0.826/25 01:46 8/22/25 Benzo(p)fuloranthene 490 J 1900 320 5 0.826/25 01:46 8/22/25 Benzo(s)fuloranthene 490 J 1900 320 5 0.826/25 01:46 8/22/25 Benzo(s)fuloranthene 310 U 1900 320 5 0.826/25 01:46 8/22/25 Benzo(k)fuloranthene 310 U 1900 320 5 0.826/25 01:46 8/22/25 Biphenyl 560 U 1900 560 5 0.826/25 01:46 8/22/25 Dibenz(a,h)anthracene 420 U 1900 280 5 0.826/25 01:46 8/22/25 Dibenz(a,h)anthracene 190 U 380 190 5 0.826/25 01:46 8/22/25 Dibenz(a,h)anthracene 750 J <	2-Methylnaphthalene	670 U	1900	670	5	08/26/25 01:46	8/22/25	
Anthracene 320 U 1900 320 5 0826/25 01:46 8/22/25 Benza(a)anthracene 510 U 1900 510 5 082/6/25 01:46 8/22/25 Benza(o)pyrene 510 U 1900 510 5 082/6/25 01:46 8/22/25 Benza(o(b)fluoranthene 490 J 1900 320 5 082/6/25 01:46 8/22/25 Benza(o(b)fluoranthene 340 U 1900 320 5 082/6/25 01:46 8/22/25 I.4-Dichlorobenzene 320 U 1900 320 5 082/6/25 01:46 8/22/25 I.4-Dichlorobenzene 310 U 1900 320 5 082/6/25 01:46 8/22/25 Benza(o(b)fluoranthene 310 U 1900 310 5 082/6/25 01:46 8/22/25 Benza(o(b)fluoranthene 310 U 1900 310 5 082/6/25 01:46 8/22/25 Benza(o(b)fluoranthene 310 U 1900 310 5 082/6/25 01:46 8/22/25 Benza(b)fluoranthene 390 J 1900 280 5 082/6/25 01:46 8/22/25 Benza(b)fluoranthene 420 U 1900 420 5 082/6/25 01:46 8/22/25 Dibenz(a,h)anthracene 190 U 380 190 5 082/6/25 01:46 8/22/25 Dibenz(a,h)anthracene 190 U 380 190 5 082/6/25 01:46 8/22/25 Dibenz(a,h)anthracene 190 U 380 190 5 082/6/25 01:46 8/22/25 Dibenz(a,h)anthracene 360 U 1900 350 5 082/6/25 01:46 8/22/25 Fluoranthene 750 J 1900 360 5 082/6/25 01:46 8/22/25 Fluoranthene 360 U 1900 360 5 082/6/25 01:46 8/22/25 Didenz(a,-3,-d)pyrene 610 U 1900 360 5 082/6/25 01:46 8/22/25 Denzal thene 290 J 1900 270 5 082/6/25 01:46 8/22/25 Phenanthrene 290 J 1900 370 5 082/6/25 01:46 8/22/25 Phenanthrene 370 U 1900 370 5 082/6/25 01:46 8/22/25 2,4,6-Trichlorophenol 430 U 1900 340 5 082/6/25 01:46 8/22/25 2,4,6-Trichlorophenol 330 U 1900 330 5 082/6/25 01:46 8/22/25 2,4-Dinitrotoluene 420 U 1900 340 5 082/6/25 01:46 8/22/25 2,4-Dinitrophenol 330 U 1900 330 5 082/6/25 01:46 8/22/25 2,4-Dinitrophenol 340 U 1900 340 5 082/6/25 01:46 8/22/25 2,4-Dinitrophenol	Acenaphthene	360 U	1900	360	5	08/26/25 01:46	8/22/25	
Benza(a)anthracene 360 J 1900 290 5 082/625 01:46 8:2225	Acenaphthylene	390 U	1900	390	5	08/26/25 01:46	8/22/25	
Benzo(a)pyrene	Anthracene	320 U	1900	320	5	08/26/25 01:46	8/22/25	
Benzo(b)Fluoranthene	Benz(a)anthracene	360 J	1900	290	5	08/26/25 01:46	8/22/25	
Benzo(g,hi)perylene	Benzo(a)pyrene	510 U	1900	510	5	08/26/25 01:46	8/22/25	
1.4-Dichlorobenzene 320 U 1900 320 5 08/26/25 01:46 8/22/25	Benzo(b)fluoranthene	490 J	1900	320	5	08/26/25 01:46	8/22/25	
IA-Dichlorobenzene 320 U 1900 320 5 08\(26\(25\) 01\(146\) 8\(22\(25\) 5 Benzo(k)fluoranthene 310 U 1900 310 5 08\(26\(25\) 01\(146\) 8\(22\(25\) 5 Benzo(k)fluoranthene 310 U 1900 310 5 08\(26\(25\) 01\(146\) 8\(22\(25\) 5 Biphenyl 560 U 1900 560 5 08\(26\(25\) 01\(146\) 8\(22\(25\) 5 Chrysene 390 J 1900 280 5 08\(26\(25\) 01\(146\) 8\(22\(25\) 5 Dibenz(a,h)anthracene 420 U 1900 420 5 08\(26\(25\) 01\(146\) 8\(22\(25\) 5 Dibenz(a,h)anthracene 190 U 380 190 5 08\(26\(25\) 01\(146\) 8\(22\(25\) 5 Dibenzofuran 350 U 1900 350 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 5 Dibenzofuran 350 U 1900 350 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) Fluoranthene 750 J 1900 480 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) Fluorene 360 U 1900 360 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) Indeno(1,2.3\)-cd)pyrene 610 U 1900 360 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) Naphthalene 360 U 1900 360 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) Pyrene 640 J 1900 360 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) Pyrene 640 J 1900 320 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) Pyrene 640 J 1900 320 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophenol 470 U 1900 470 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophenol 430 U 1900 370 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophenol 3300 U 9800 3300 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophenol 3300 U 9800 3300 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophenol 3300 U 9800 3300 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophenol 3300 U 9800 3300 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophenol 3300 U 9800 3300 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophenol 320 U 1900 340 5 08\(26\(25\) 01\(146\) 8\(22\)(25\) 2\(24\)5-Trichlorophe	Benzo(g,h,i)perylene	440 U	1900	440	5	08/26/25 01:46	8/22/25	
Biphenyl		320 U	1900	320	5	08/26/25 01:46	8/22/25	
Biphenyl 560 U 1900 560 S 5 08/26/25 01:46 8/22/25 Dibenz(a,h)anthracene 420 U 1900 420 5 08/26/25 01:46 8/22/25 Dibenz(a,h)anthracene 190 U 380 190 5 08/26/25 01:46 8/22/25 Ji-Dioxane 190 U 380 190 5 08/26/25 01:46 8/22/25 Dibenzofuran 350 U 1900 350 5 08/26/25 01:46 8/22/25 Fluoranthene 750 J 1900 480 5 08/26/25 01:46 8/22/25 Fluorene 360 U 1900 360 5 08/26/25 01:46 8/22/25 Naphthalene 360 U 1900 360 5 08/26/25 01:46 8/22/25 Phenanthrene 290 J 1900 360 5 08/26/25 01:46 8/22/25 Pyrene 640 J 1900 320 5 08/26/25 01:46 8/22/25 Pyrene 640 J 1900 370 5 08/	Benzo(k)fluoranthene	310 U	1900	310	5	08/26/25 01:46	8/22/25	
Chrysene 390 J 1900 280 5 08/26/25 01:46 8/22/25 Dibenz(a,h)anthracene 420 U 1900 420 5 08/26/25 01:46 8/22/25 L/4-Dioxane 190 U 380 190 5 08/26/25 01:46 8/22/25 Dibenzofuran 350 U 1900 350 5 08/26/25 01:46 8/22/25 Fluoranthene 750 J 1900 360 5 08/26/25 01:46 8/22/25 Indeno(1,2,3-cd)pyrene 610 U 1900 360 5 08/26/25 01:46 8/22/25 Naphthalene 360 U 1900 360 5 08/26/25 01:46 8/22/25 Phenanthrene 290 J 1900 360 5 08/26/25 01:46 8/22/25 Pyrene 640 J 1900 360 5 08/26/25 01:46 8/22/25 Pyrene 640 J 1900 320 5 08/26/25 01:46 8/22/25 2,3.4.6-Tetrachlorophenol 470 U 1900 430 5 </td <td>Biphenyl</td> <td>560 U</td> <td>1900</td> <td>560</td> <td></td> <td>08/26/25 01:46</td> <td>8/22/25</td> <td></td>	Biphenyl	560 U	1900	560		08/26/25 01:46	8/22/25	
Dibenz(a,h)anthracene		390 J	1900	280	5	08/26/25 01:46	8/22/25	
1,4-Dioxane								
Dibenzofuran 350 U 1900 350 5 08/26/25 01:46 8/22/25								
Fluoranthene 750 J 1900 480 5 08/26/25 01:46 8/22/25	*	350 U	1900	350	5		8/22/25	
Fluorene	Fluoranthene	750 J	1900					
Indeno(1,2,3-cd)pyrene	Fluorene							
Naphthalene 360 U 1900 360 5 08/26/25 01:46 8/22/25								
Phenanthrene 290 J 1900 270 5 08/26/25 01:46 8/22/25 Pyrene 640 J 1900 320 5 08/26/25 01:46 8/22/25 2,3,4,6-Tetrachlorophenol 470 U 1900 660 5 08/26/25 01:46 8/22/25 2,4,5-Trichlorophenol 470 U 1900 470 5 08/26/25 01:46 8/22/25 2,4,6-Trichlorophenol 430 U 1900 430 5 08/26/25 01:46 8/22/25 2,4-Dichlorophenol 370 U 1900 370 5 08/26/25 01:46 8/22/25 2,4-Dimethylphenol 340 U 1900 340 5 08/26/25 01:46 8/22/25 2,4-Dimethylphenol 3300 U 9800 3300 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 420 U 1900 380 5 08/26/25 01:46 8/22/25 2,Chloronaphthalene 380 U								
Pyrene 640 J 1900 320 5 08/26/25 01:46 8/22/25 2,3,4,6-Tetrachlorophenol 660 U 1900 660 5 08/26/25 01:46 8/22/25 2,4,5-Trichlorophenol 470 U 1900 470 5 08/26/25 01:46 8/22/25 2,4-Dichlorophenol 370 U 1900 370 5 08/26/25 01:46 8/22/25 2,4-Dichlorophenol 340 U 1900 340 5 08/26/25 01:46 8/22/25 2,4-Dimitrophenol 340 U 1900 340 5 08/26/25 01:46 8/22/25 2,4-Dimitrophenol 3300 U 9800 3300 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 420 U 1900 380 5 08/26/25 01:46 8/22/25 2,6-Dinitrotoluene 320 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U								
2,3,4,6-Tetrachlorophenol 660 U 1900 660 5 08/26/25 01:46 8/22/25 2,4,5-Trichlorophenol 470 U 1900 470 5 08/26/25 01:46 8/22/25 2,4,6-Trichlorophenol 430 U 1900 430 5 08/26/25 01:46 8/22/25 2,4-Dichlorophenol 370 U 1900 370 5 08/26/25 01:46 8/22/25 2,4-Dimethylphenol 340 U 1900 340 5 08/26/25 01:46 8/22/25 2,4-Dimitrophenol 3300 U 9800 3300 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 420 U 1900 380 5 08/26/25 01:46 8/22/25 2,6-Dinitrotoluene 420 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U 1900 320 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 9800 450 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 980 450 5<								
2,4,5-Trichlorophenol 470 U 1900 470 5 08/26/25 01:46 8/22/25 2,4,6-Trichlorophenol 430 U 1900 430 5 08/26/25 01:46 8/22/25 2,4-Dichlorophenol 370 U 1900 370 5 08/26/25 01:46 8/22/25 2,4-Dimethylphenol 340 U 1900 340 5 08/26/25 01:46 8/22/25 2,4-Dimitrophenol 3300 U 9800 3300 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,6-Dinitrotoluene 420 U 1900 420 5 08/26/25 01:46 8/22/25 2-Chlorophenol 380 U 1900 380 5 08/26/25 01:46 8/22/25 2-Methylphenol 400 U 1900 320 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
2,4,6-Trichlorophenol 430 U 1900 430 5 08/26/25 01:46 8/22/25 2,4-Dichlorophenol 370 U 1900 370 5 08/26/25 01:46 8/22/25 2,4-Dimethylphenol 340 U 1900 340 5 08/26/25 01:46 8/22/25 2,4-Dimitrophenol 3300 U 9800 3300 5 08/26/25 01:46 8/22/25 2,4-Dimitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,6-Dimitrotoluene 420 U 1900 730 5 08/26/25 01:46 8/22/25 2,6-Dimitrotoluene 420 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 380 U 1900 380 5 08/26/25 01:46 8/22/25 2-Nitrophenol 400 U 1900 400 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900								
2,4-Dichlorophenol 370 U 1900 370 5 08/26/25 01:46 8/22/25 2,4-Dimethylphenol 340 U 1900 340 5 08/26/25 01:46 8/22/25 2,4-Dinitrophenol 3300 U 9800 3300 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,6-Dinitrotoluene 420 U 1900 420 5 08/26/25 01:46 8/22/25 2-Chloronaphthalene 380 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U 1900 320 5 08/26/25 01:46 8/22/25 2-Methylphenol 400 U 1900 320 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3-and 4-Methylphenol Coelution 370 U <t< td=""><td></td><td>430 U</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		430 U						
2,4-Dimethylphenol 340 U 1900 340 5 08/26/25 01:46 8/22/25 2,4-Dinitrophenol 3300 U 9800 3300 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,6-Dinitrotoluene 420 U 1900 420 5 08/26/25 01:46 8/22/25 2-Chloronaphthalene 380 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U 1900 320 5 08/26/25 01:46 8/22/25 2-Methylphenol 400 U 1900 400 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 9800 450 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-met								
2,4-Dinitrophenol 3300 U 9800 3300 5 08/26/25 01:46 8/22/25 2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,6-Dinitrotoluene 420 U 1900 420 5 08/26/25 01:46 8/22/25 2-Chloronaphthalene 380 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U 1900 320 5 08/26/25 01:46 8/22/25 2-Methylphenol 400 U 1900 400 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 9800 450 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3-and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 1100 5 08/26/25 01:46 8/22/25 4,6-								
2,4-Dinitrotoluene 730 U 1900 730 5 08/26/25 01:46 8/22/25 2,6-Dinitrotoluene 420 U 1900 420 5 08/26/25 01:46 8/22/25 2-Chloronaphthalene 380 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U 1900 320 5 08/26/25 01:46 8/22/25 2-Methylphenol 400 U 1900 400 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 9800 450 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3-and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 39								
2,6-Dinitrotoluene 420 U 1900 420 5 08/26/25 01:46 8/22/25 2-Chloronaphthalene 380 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U 1900 320 5 08/26/25 01:46 8/22/25 2-Methylphenol 400 U 1900 400 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 9800 450 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3- and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
2-Chloronaphthalene 380 U 1900 380 5 08/26/25 01:46 8/22/25 2-Chlorophenol 320 U 1900 320 5 08/26/25 01:46 8/22/25 2-Methylphenol 400 U 1900 400 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 9800 450 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3- and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
2-Chlorophenol 320 U 1900 320 5 08/26/25 01:46 8/22/25 2-Methylphenol 400 U 1900 400 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 9800 450 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3- and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25	,							
2-Methylphenol 400 U 1900 400 5 08/26/25 01:46 8/22/25 2-Nitroaniline 450 U 9800 450 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3- and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4-6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
2-Nitroaniline 450 U 9800 450 S 5 08/26/25 01:46 8/22/25 2-Nitrophenol 440 U 1900 440 S 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 S 5 08/26/25 01:46 8/22/25 3- and 4-Methylphenol Coelution 370 U 1900 370 S 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 S 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
2-Nitrophenol 440 U 1900 440 5 08/26/25 01:46 8/22/25 3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3- and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
3,3'-Dichlorobenzidine 690 U 1900 690 5 08/26/25 01:46 8/22/25 3- and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
3- and 4-Methylphenol Coelution 370 U 1900 370 5 08/26/25 01:46 8/22/25 3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
3-Nitroaniline 380 U 9800 380 5 08/26/25 01:46 8/22/25 4,6-Dinitro-2-methylphenol 1100 U 9800 1100 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
4,6-Dinitro-2-methylphenol 1100 U 9800 1100 S 5 08/26/25 01:46 8/22/25 4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
4-Bromophenyl Phenyl Ether 500 U 1900 500 5 08/26/25 01:46 8/22/25 4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25								
4-Chloro-3-methylphenol 390 U 1900 390 5 08/26/25 01:46 8/22/25	4-Bromonhenyl Phenyl Ether							
	4-Chloroaniline	690 U	1900	690	5	08/26/25 01:46	8/22/25	

Printed 11/19/2025 4:15:46 PM

Superset Reference: 25-0000743176 rev 00

Service Request: R2510162

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:08 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB01 (1-2) Units: ug/Kg Lab Code: R2510162-001 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4-Chlorophenyl Phenyl Ether	410 U	1900	410	5	08/26/25 01:46	8/22/25	
4-Nitroaniline	410 U	9800	410	5	08/26/25 01:46	8/22/25	
4-Nitrophenol	980 U	9800	980	5	08/26/25 01:46	8/22/25	
Acetophenone	550 U	1900	550	5	08/26/25 01:46	8/22/25	
Atrazine	570 U	1900	570	5	08/26/25 01:46	8/22/25	
Benzaldehyde	460 U	9800	460	5	08/26/25 01:46	8/22/25	
Benzoic Acid	3000 U	9800	3000	5	08/26/25 01:46	8/22/25	
Bis(1-chloroisopropyl) Ether	390 U	1900	390	5	08/26/25 01:46	8/22/25	
Bis(2-chloroethoxy)methane	470 U	1900	470	5	08/26/25 01:46	8/22/25	
Bis(2-chloroethyl) Ether	380 U	1900	380	5	08/26/25 01:46	8/22/25	
Bis(2-ethylhexyl) Phthalate	350 U	2900	350	5	08/26/25 01:46	8/22/25	
Butyl Benzyl Phthalate	560 U	1900	560	5	08/26/25 01:46	8/22/25	
Caprolactam	420 U	1900	420	5	08/26/25 01:46	8/22/25	
Carbazole	310 U	1900	310	5	08/26/25 01:46	8/22/25	
Di-n-butyl Phthalate	310 U	1900	310	5	08/26/25 01:46	8/22/25	
Di-n-octyl Phthalate	660 U	1900	660	5	08/26/25 01:46	8/22/25	
Diethyl Phthalate	340 U	1900	340	5	08/26/25 01:46	8/22/25	
Dimethyl Phthalate	360 U	1900	360	5	08/26/25 01:46	8/22/25	
Hexachlorobenzene	460 U	1900	460	5	08/26/25 01:46	8/22/25	
Hexachlorobutadiene	670 U	1900	670	5	08/26/25 01:46	8/22/25	
Hexachlorocyclopentadiene	610 U	1900	610	5	08/26/25 01:46	8/22/25	
Hexachloroethane	360 U	1900	360	5	08/26/25 01:46	8/22/25	
Isophorone	400 U	1900	400	5	08/26/25 01:46	8/22/25	
N-Nitrosodi-n-propylamine	580 U	1900	580	5	08/26/25 01:46	8/22/25	
N-Nitrosodiphenylamine	1200 U	1900	1200	5	08/26/25 01:46	8/22/25	
Nitrobenzene	340 U	1900	340	5	08/26/25 01:46	8/22/25	
Pentachlorophenol (PCP)	1900 U	9800	1900	5	08/26/25 01:46	8/22/25	
Phenol	380 U	1900	380	5	08/26/25 01:46	8/22/25	
Pyridine	260 U	9800	260	5	08/26/25 01:46	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	77	18 - 104	08/26/25 01:46	
Nitrobenzene-d5	74	12 - 98	08/26/25 01:46	
p-Terphenyl-d14	98	26 - 134	08/26/25 01:46	

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:25 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB02 (3-4) Units: ug/Kg Lab Code: R2510162-002 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	82 U	370	82	1	08/26/25 02:10	8/22/25	
1-Methylnaphthalene	68 U	370	68	1	08/26/25 02:10	8/22/25	
2-Methylnaphthalene	130 U	370	130	1	08/26/25 02:10	8/22/25	
Acenaphthene	70 U	370	70	1	08/26/25 02:10	8/22/25	
Acenaphthylene	75 U	370	75	1	08/26/25 02:10	8/22/25	
Anthracene	62 U	370	62	1	08/26/25 02:10	8/22/25	
Benz(a)anthracene	130 J	370	55	1	08/26/25 02:10	8/22/25	
Benzo(a)pyrene	160 J	370	98	1	08/26/25 02:10	8/22/25	
Benzo(b)fluoranthene	200 J	370	62	1	08/26/25 02:10	8/22/25	
Benzo(g,h,i)perylene	120 J	370	85	1	08/26/25 02:10	8/22/25	
1,4-Dichlorobenzene	62 U	370	62	1	08/26/25 02:10	8/22/25	
Benzo(k)fluoranthene	75 J	370	60	1	08/26/25 02:10	8/22/25	
Biphenyl	110 U	370	110	1	08/26/25 02:10	8/22/25	
Chrysene	150 J	370	54	1	08/26/25 02:10	8/22/25	
1,4-Dioxane	36 U	75	36	1	08/26/25 02:10	8/22/25	
Dibenz(a,h)anthracene	80 U	370	80	1	08/26/25 02:10	8/22/25	
Dibenzofuran	67 U	370	67	1	08/26/25 02:10	8/22/25	
Fluoranthene	280 J	370	93	1	08/26/25 02:10	8/22/25	
Fluorene	69 U	370	69	1	08/26/25 02:10	8/22/25	
Indeno(1,2,3-cd)pyrene	120 U	370	120	1	08/26/25 02:10	8/22/25	
Naphthalene	69 U	370	69	1	08/26/25 02:10	8/22/25	
Phenanthrene	140 J	370	52	1	08/26/25 02:10	8/22/25	
Pyrene	230 J	370	62	1	08/26/25 02:10	8/22/25	
2,3,4,6-Tetrachlorophenol	130 U	370	130	1	08/26/25 02:10	8/22/25	
2,4,5-Trichlorophenol	91 U	370	91	1	08/26/25 02:10	8/22/25	
2,4,6-Trichlorophenol	82 U	370	82	1	08/26/25 02:10	8/22/25	
2,4-Dichlorophenol	71 U	370	71	1	08/26/25 02:10	8/22/25	
2,4-Dimethylphenol	66 U	370	66	1	08/26/25 02:10	8/22/25	
2,4-Dinitrophenol	630 U	1900	630	1	08/26/25 02:10	8/22/25	
2,4-Dinitrotoluene	150 U	370	150	1	08/26/25 02:10	8/22/25	
2,6-Dinitrotoluene	81 U	370	81	1	08/26/25 02:10	8/22/25	
2-Chloronaphthalene	74 U	370	74	1	08/26/25 02:10	8/22/25	
2-Chlorophenol	62 U	370	62	1	08/26/25 02:10	8/22/25	
2-Methylphenol	77 U	370	77	1	08/26/25 02:10	8/22/25	
2-Nitroaniline	87 U	1900	87	1	08/26/25 02:10	8/22/25	
2-Nitrophenol	86 U	370	86	1	08/26/25 02:10	8/22/25	
3,3'-Dichlorobenzidine	140 U	370	140	1	08/26/25 02:10	8/22/25	
3- and 4-Methylphenol Coelution	71 U	370	71	1	08/26/25 02:10	8/22/25	
3-Nitroaniline	74 U	1900	74	1	08/26/25 02:10	8/22/25	
4,6-Dinitro-2-methylphenol	210 U	1900	210	1	08/26/25 02:10	8/22/25	
4-Bromophenyl Phenyl Ether	97 U	370	97	1	08/26/25 02:10	8/22/25	
4-Chloro-3-methylphenol	74 U	370	97 74	1	08/26/25 02:10	8/22/25	
4-Chloroaniline	140 U	370	140	1	08/26/25 02:10	8/22/25	
4-Chioroaniline	140 U	370	140	1	06/26/23 02:10	0/22/23	

Printed 11/19/2025 4:15:46 PM

Superset Reference:25-0000743176 rev 00

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:25 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB02 (3-4) Units: ug/Kg Lab Code: R2510162-002 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4-Chlorophenyl Phenyl Ether	79 U	370	79	1	08/26/25 02:10	8/22/25	
4-Nitroaniline	80 U	1900	80	1	08/26/25 02:10	8/22/25	
4-Nitrophenol	190 U	1900	190	1	08/26/25 02:10	8/22/25	
Acetophenone	110 U	370	110	1	08/26/25 02:10	8/22/25	
Atrazine	110 U	370	110	1	08/26/25 02:10	8/22/25	
Benzaldehyde	89 U	1900	89	1	08/26/25 02:10	8/22/25	
Benzoic Acid	580 U	1900	580	1	08/26/25 02:10	8/22/25	
Bis(1-chloroisopropyl) Ether	76 U	370	76	1	08/26/25 02:10	8/22/25	
Bis(2-chloroethoxy)methane	90 U	370	90	1	08/26/25 02:10	8/22/25	
Bis(2-chloroethyl) Ether	73 U	370	73	1	08/26/25 02:10	8/22/25	
Bis(2-ethylhexyl) Phthalate	67 U	560	67	1	08/26/25 02:10	8/22/25	
Butyl Benzyl Phthalate	110 U	370	110	1	08/26/25 02:10	8/22/25	
Caprolactam	81 U	370	81	1	08/26/25 02:10	8/22/25	
Carbazole	60 U	370	60	1	08/26/25 02:10	8/22/25	
Di-n-butyl Phthalate	60 U	370	60	1	08/26/25 02:10	8/22/25	
Di-n-octyl Phthalate	130 U	370	130	1	08/26/25 02:10	8/22/25	
Diethyl Phthalate	66 U	370	66	1	08/26/25 02:10	8/22/25	
Dimethyl Phthalate	70 U	370	70	1	08/26/25 02:10	8/22/25	
Hexachlorobenzene	89 U	370	89	1	08/26/25 02:10	8/22/25	
Hexachlorobutadiene	130 U	370	130	1	08/26/25 02:10	8/22/25	
Hexachlorocyclopentadiene	120 U	370	120	1	08/26/25 02:10	8/22/25	
Hexachloroethane	69 U	370	69	1	08/26/25 02:10	8/22/25	
Isophorone	77 U	370	77	1	08/26/25 02:10	8/22/25	
N-Nitrosodi-n-propylamine	120 U	370	120	1	08/26/25 02:10	8/22/25	
N-Nitrosodiphenylamine	230 U	370	230	1	08/26/25 02:10	8/22/25	
Nitrobenzene	66 U	370	66	1	08/26/25 02:10	8/22/25	
Pentachlorophenol (PCP)	370 U	1900	370	1	08/26/25 02:10	8/22/25	
Phenol	74 U	370	74	1	08/26/25 02:10	8/22/25	
Pyridine	50 U	1900	50	1	08/26/25 02:10	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	76	18 - 104	08/26/25 02:10	
Nitrobenzene-d5	72	12 - 98	08/26/25 02:10	
p-Terphenyl-d14	93	26 - 134	08/26/25 02:10	

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:38 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB03 (5-6) Units: ug/Kg Lab Code: R2510162-003 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	220 U	1200	220	1	08/26/25 02:34	8/22/25	
1,2,4,5-Tetrachlorobenzene	270 U	1200	270	1	08/26/25 02:34	8/22/25	
2-Methylnaphthalene	420 U	1200	420	1	08/26/25 02:34	8/22/25	
Acenaphthene	230 U	1200	230	1	08/26/25 02:34	8/22/25	
Acenaphthylene	240 U	1200	240	1	08/26/25 02:34	8/22/25	
Anthracene	200 U	1200	200	1	08/26/25 02:34	8/22/25	
Benz(a)anthracene	180 U	1200	180	1	08/26/25 02:34	8/22/25	
Benzo(a)pyrene	320 U	1200	320	1	08/26/25 02:34	8/22/25	
Benzo(b)fluoranthene	200 U	1200	200	1	08/26/25 02:34	8/22/25	
Benzo(g,h,i)perylene	280 U	1200	280	1	08/26/25 02:34	8/22/25	
1,4-Dichlorobenzene	200 U	1200	200	1	08/26/25 02:34	8/22/25	
Benzo(k)fluoranthene	200 U	1200	200	1	08/26/25 02:34	8/22/25	
Biphenyl	350 U	1200	350	1	08/26/25 02:34	8/22/25	
Chrysene	180 U	1200	180	1	08/26/25 02:34	8/22/25	
1,4-Dioxane	120 U	240	120	1	08/26/25 02:34	8/22/25	
Dibenz(a,h)anthracene	260 U	1200	260	1	08/26/25 02:34	8/22/25	
Dibenzofuran	220 U	1200	220	1	08/26/25 02:34	8/22/25	
Fluoranthene	300 U	1200	300	1	08/26/25 02:34	8/22/25	
Fluorene	230 U	1200	230	1	08/26/25 02:34	8/22/25	
Indeno(1,2,3-cd)pyrene	380 U	1200	380	1	08/26/25 02:34	8/22/25	
Naphthalene	230 U	1200	230	1	08/26/25 02:34	8/22/25	
Phenanthrene	170 U	1200	170	1	08/26/25 02:34	8/22/25	
Pyrene	200 U	1200	200	1	08/26/25 02:34	8/22/25	
2,3,4,6-Tetrachlorophenol	410 U	1200	410	1	08/26/25 02:34	8/22/25	
2,4,5-Trichlorophenol	290 U	1200	290	1	08/26/25 02:34	8/22/25	
2,4,6-Trichlorophenol	270 U	1200	270	1	08/26/25 02:34	8/22/25	
2,4-Dichlorophenol	230 U	1200	230	1	08/26/25 02:34	8/22/25	
2,4-Dimethylphenol	220 U	1200	220	1	08/26/25 02:34	8/22/25	
2,4-Dinitrophenol	2000 U	6100	2000	1	08/26/25 02:34	8/22/25	
2,4-Dinitrotoluene	460 U	1200	460	1	08/26/25 02:34	8/22/25	
2,6-Dinitrotoluene	260 U	1200	260	1	08/26/25 02:34	8/22/25	
2-Chloronaphthalene	240 U	1200	240	1	08/26/25 02:34	8/22/25	
2-Chlorophenol	200 U	1200	200	1	08/26/25 02:34	8/22/25	
2-Methylphenol	250 U	1200	250	1	08/26/25 02:34	8/22/25	
2-Nitroaniline	280 U	6100	280	1	08/26/25 02:34	8/22/25	
2-Nitrophenol	280 U	1200	280	1	08/26/25 02:34	8/22/25	
3,3'-Dichlorobenzidine	430 U	1200	430	1	08/26/25 02:34	8/22/25	
3- and 4-Methylphenol Coelution	230 U	1200	230	1	08/26/25 02:34	8/22/25	
3-Nitroaniline	240 U	6100	240	1	08/26/25 02:34	8/22/25	
4,6-Dinitro-2-methylphenol	670 U	6100	670	1	08/26/25 02:34	8/22/25	
4-Bromophenyl Phenyl Ether	310 U	1200	310	1	08/26/25 02:34	8/22/25	
4-Chloro-3-methylphenol	240 U	1200	240	1	08/26/25 02:34	8/22/25	
4-Chloroaniline	430 U	1200	430	1	08/26/25 02:34	8/22/25	
T CINOIOAIIIIIIC	730 U	1200	750	1	00/20/23 02.34	01 441 43	

Printed 11/19/2025 4:15:47 PM

Superset Reference:25-0000743176 rev 00

Analytical Report

Client: ALS Environmental - US

Project: 11888_Glenfield **Date Collected:** 08/13/25 11:38

Sample Matrix: Soil

Date Received: 08/20/25 09:30
Units: ug/Kg

Service Request: R2510162

Basis: Dry

 Sample Name:
 11888 SB03 (5-6)

 Lab Code:
 R2510162-003

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4-Chlorophenyl Phenyl Ether	260 U	1200	260	1	08/26/25 02:34	8/22/25	
4-Nitroaniline	260 U	6100	260	1	08/26/25 02:34	8/22/25	
4-Nitrophenol	610 U	6100	610	1	08/26/25 02:34	8/22/25	
Acetophenone	340 U	1200	340	1	08/26/25 02:34	8/22/25	
Atrazine	360 U	1200	360	1	08/26/25 02:34	8/22/25	
Benzaldehyde	290 U	6100	290	1	08/26/25 02:34	8/22/25	
Benzoic Acid	1900 U	6100	1900	1	08/26/25 02:34	8/22/25	
Bis(1-chloroisopropyl) Ether	250 U	1200	250	1	08/26/25 02:34	8/22/25	
Bis(2-chloroethoxy)methane	290 U	1200	290	1	08/26/25 02:34	8/22/25	
Bis(2-chloroethyl) Ether	240 U	1200	240	1	08/26/25 02:34	8/22/25	
Bis(2-ethylhexyl) Phthalate	220 U	1800	220	1	08/26/25 02:34	8/22/25	
Butyl Benzyl Phthalate	350 U	1200	350	1	08/26/25 02:34	8/22/25	
Caprolactam	260 U	1200	260	1	08/26/25 02:34	8/22/25	
Carbazole	200 U	1200	200	1	08/26/25 02:34	8/22/25	
Di-n-butyl Phthalate	200 U	1200	200	1	08/26/25 02:34	8/22/25	
Di-n-octyl Phthalate	420 U	1200	420	1	08/26/25 02:34	8/22/25	
Diethyl Phthalate	210 U	1200	210	1	08/26/25 02:34	8/22/25	
Dimethyl Phthalate	230 U	1200	230	1	08/26/25 02:34	8/22/25	
Hexachlorobenzene	290 U	1200	290	1	08/26/25 02:34	8/22/25	
Hexachlorobutadiene	420 U	1200	420	1	08/26/25 02:34	8/22/25	
Hexachlorocyclopentadiene	380 U	1200	380	1	08/26/25 02:34	8/22/25	
Hexachloroethane	230 U	1200	230	1	08/26/25 02:34	8/22/25	
Isophorone	250 U	1200	250	1	08/26/25 02:34	8/22/25	
N-Nitrosodi-n-propylamine	370 U	1200	370	1	08/26/25 02:34	8/22/25	
N-Nitrosodiphenylamine	740 U	1200	740	1	08/26/25 02:34	8/22/25	
Nitrobenzene	210 U	1200	210	1	08/26/25 02:34	8/22/25	
Pentachlorophenol (PCP)	1200 U	6100	1200	1	08/26/25 02:34	8/22/25	
Phenol	240 U	1200	240	1	08/26/25 02:34	8/22/25	
Pyridine	160 U	6100	160	1	08/26/25 02:34	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	71	18 - 104	08/26/25 02:34	
Nitrobenzene-d5	63	12 - 98	08/26/25 02:34	
p-Terphenyl-d14	93	26 - 134	08/26/25 02:34	

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: ALS Environmental - US

Project: 11888_Glenfield **Date Collected:** 08/13/25 11:08

Sample Matrix: Soil Date Received: 08/20/25 09:30

 Sample Name:
 11888 SB01 (1-2)
 Units: ug/Kg

 Lab Code:
 R2510162-001
 Basis: Dry

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	4.5	1.9	0.97	1	08/27/25 20:03	8/22/25	
4,4'-DDE	53	1.9	0.97	1	08/27/25 20:03	8/22/25	
4,4'-DDT	17	1.9	0.97	1	08/27/25 20:03	8/22/25	
Aldrin	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
Chlordane	4.9 U	9.5	4.9	1	08/27/25 20:03	8/22/25	
Dieldrin	2.1	1.9	0.97	1	08/27/25 20:03	8/22/25	
Endosulfan I	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
Endosulfan II	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
Endosulfan Sulfate	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
Endrin	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
Endrin Aldehyde	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	<u> </u>
Endrin Ketone	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
Heptachlor	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
Heptachlor Epoxide	2.0	1.9	0.97	1	08/27/25 20:03	8/22/25	
Methoxychlor	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
Toxaphene	22 U	38	22	1	08/27/25 20:03	8/22/25	
alpha-BHC	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
alpha-Chlordane	10 P	1.9	0.97	1	08/27/25 20:03	8/22/25	
beta-BHC	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
delta-BHC	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
gamma-BHC (Lindane)	0.97 U	1.9	0.97	1	08/27/25 20:03	8/22/25	
gamma-Chlordane	8.0	1.9	0.97	1	08/27/25 20:03	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	78	10 - 159	08/27/25 20:03	
Tetrachloro-m-xylene	64	10 - 132	08/27/25 20:03	

Service Request: R2510162

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:25 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB02 (3-4) Units: ug/Kg Lab Code: R2510162-002 Basis: Dry

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	5.3	1.9	0.94	1	08/27/25 20:20	8/22/25	
4,4'-DDE	43	1.9	0.94	1	08/27/25 20:20	8/22/25	
4,4'-DDT	7.0 P	1.9	0.94	1	08/27/25 20:20	8/22/25	
Aldrin	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Chlordane	4.7 U	9.2	4.7	1	08/27/25 20:20	8/22/25	
Dieldrin	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Endosulfan I	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Endosulfan II	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Endosulfan Sulfate	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Endrin	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Endrin Aldehyde	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Endrin Ketone	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Heptachlor	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Heptachlor Epoxide	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Methoxychlor	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
Toxaphene	22 U	37	22	1	08/27/25 20:20	8/22/25	
alpha-BHC	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
alpha-Chlordane	2.6 P	1.9	0.94	1	08/27/25 20:20	8/22/25	
beta-BHC	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
delta-BHC	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
gamma-BHC (Lindane)	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	
gamma-Chlordane	0.94 U	1.9	0.94	1	08/27/25 20:20	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	72	10 - 159	08/27/25 20:20	
Tetrachloro-m-xylene	56	10 - 132	08/27/25 20:20	

Analytical Report

Client: ALS Environmental - US

Project: 11888_Glenfield **Date Collected:** 08/13/25 11:38

Sample Matrix: Soil

Date Received: 08/20/25 09:30

Service Request: R2510162

 Sample Name:
 11888 SB03 (5-6)
 Units: ug/Kg

 Lab Code:
 R2510162-003
 Basis: Dry

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
4,4'-DDE	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
4,4'-DDT	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Aldrin	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Chlordane	16 U	31	16	1	08/27/25 20:38	8/22/25	
Dieldrin	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Endosulfan I	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Endosulfan II	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Endosulfan Sulfate	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Endrin	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Endrin Aldehyde	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Endrin Ketone	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Heptachlor	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Heptachlor Epoxide	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Methoxychlor	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
Toxaphene	71 U	120	71	1	08/27/25 20:38	8/22/25	
alpha-BHC	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
alpha-Chlordane	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
beta-BHC	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
delta-BHC	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
gamma-BHC (Lindane)	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	
gamma-Chlordane	3.2 U	6.3	3.2	1	08/27/25 20:38	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
Decachlorobiphenyl	74	10 - 159	08/27/25 20:38		
Tetrachloro-m-xylene	43	10 - 132	08/27/25 20:38		

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:08 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB01 (1-2) Units: ug/Kg Lab Code: R2510162-001 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	20 U	38	20	1	08/27/25 00:41	8/22/25	
Aroclor 1221	30 U	77	30	1	08/27/25 00:41	8/22/25	
Aroclor 1232	22 U	38	22	1	08/27/25 00:41	8/22/25	
Aroclor 1242	20 U	38	20	1	08/27/25 00:41	8/22/25	
Aroclor 1248	21 U	38	21	1	08/27/25 00:41	8/22/25	
Aroclor 1254	20 U	38	20	1	08/27/25 00:41	8/22/25	
Aroclor 1260	20 U	38	20	1	08/27/25 00:41	8/22/25	
Aroclor 1262	20 U	38	20	1	08/27/25 00:41	8/22/25	
Aroclor 1268	20 U	38	20	1	08/27/25 00:41	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	87	10 - 138	08/27/25 00:41	
Tetrachloro-m-xylene	70	11 - 122	08/27/25 00:41	

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:25 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB02 (3-4) Units: ug/Kg Lab Code: R2510162-002 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	19 U	37	19	1	08/27/25 00:54	8/22/25	
Aroclor 1221	29 U	75	29	1	08/27/25 00:54	8/22/25	
Aroclor 1232	22 U	37	22	1	08/27/25 00:54	8/22/25	
Aroclor 1242	19 U	37	19	1	08/27/25 00:54	8/22/25	
Aroclor 1248	21 U	37	21	1	08/27/25 00:54	8/22/25	
Aroclor 1254	19 U	37	19	1	08/27/25 00:54	8/22/25	
Aroclor 1260	19 U	37	19	1	08/27/25 00:54	8/22/25	
Aroclor 1262	19 U	37	19	1	08/27/25 00:54	8/22/25	
Aroclor 1268	19 U	37	19	1	08/27/25 00:54	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	80	10 - 138	08/27/25 00:54	_
Tetrachloro-m-xylene	63	11 - 122	08/27/25 00:54	

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:38 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB03 (5-6) Units: ug/Kg Lab Code: R2510162-003 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	63 U	120	63	1	08/27/25 01:07	8/22/25	
Aroclor 1221	97 U	250	97	1	08/27/25 01:07	8/22/25	
Aroclor 1232	71 U	120	71	1	08/27/25 01:07	8/22/25	
Aroclor 1242	63 U	120	63	1	08/27/25 01:07	8/22/25	
Aroclor 1248	67 U	120	67	1	08/27/25 01:07	8/22/25	
Aroclor 1254	63 U	120	63	1	08/27/25 01:07	8/22/25	
Aroclor 1260	63 U	120	63	1	08/27/25 01:07	8/22/25	
Aroclor 1262	63 U	120	63	1	08/27/25 01:07	8/22/25	
Aroclor 1268	63 U	120	63	1	08/27/25 01:07	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	82	10 - 138	08/27/25 01:07	
Tetrachloro-m-xylene	48	11 - 122	08/27/25 01:07	

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:08 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB01 (1-2) Units: ug/Kg Lab Code: R2510162-001 Basis: Dry

Chlorinated Herbicides by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4,5-T	5.8 U	11	5.8	1	08/28/25 21:37	8/26/25	_
2,4,5-TP	5.2 U	11	5.2	1	08/28/25 21:37	8/26/25	
2,4-D	7.5 U	11	7.5	1	08/28/25 21:37	8/26/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
DCAA	56	10 - 151	08/28/25 21:37	

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:25 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB02 (3-4) Units: ug/Kg Lab Code: R2510162-002 Basis: Dry

Chlorinated Herbicides by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4,5-T	5.7 U	11	5.7	1	08/28/25 22:31	8/26/25	_
2,4,5-TP	5.1 U	11	5.1	1	08/28/25 22:31	8/26/25	
2,4-D	7.3 U	11	7.3	1	08/28/25 22:31	8/26/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
DCAA	56	10 - 151	08/28/25 22:31	

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:38 **Project:** 11888_Glenfield

Sample Matrix: Soil **Date Received:** 08/20/25 09:30

Sample Name: 11888 SB03 (5-6) Units: ug/Kg Lab Code: R2510162-003 Basis: Dry

Chlorinated Herbicides by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4,5-T	6.2 U	12	6.2	1	08/28/25 22:50	8/26/25	_
2,4,5-TP	5.6 U	12	5.6	1	08/28/25 22:50	8/26/25	
2,4-D	8.1 U	12	8.1	1	08/28/25 22:50	8/26/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
DCAA	37	10 - 151	08/28/25 22:50	

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:08 **Project:** 11888_Glenfield

Date Received: 08/20/25 09:30 **Sample Matrix:** Soil

Sample Name: 11888 SB01 (1-2) Basis: As Received

Lab Code: R2510162-001

Inorganic Parameters

Analysis **Analyte Name** Method Result Units **MRL MDL** Dil. **Date Analyzed** Q Total Solids ALS SOP 86.5 08/29/25 10:00 Percent

Analytical Report

Client: ALS Environmental - US

Project: 11888_Glenfield **Date Collected:** 08/13/25 11:25

Sample Matrix: Soil Date Received: 08/20/25 09:30

Sample Name: 11888 SB02 (3-4) Basis: As Received

Lab Code: R2510162-002

Inorganic Parameters

Analysis
Analyte Name Method Result Units MRL MDL Dil. Date Analyzed Q
Total Solids ALS SOP 88.9 Percent - 1 08/29/25 10:00

Service Request: R2510162

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Date Collected:** 08/13/25 11:38 **Project:** 11888_Glenfield

Date Received: 08/20/25 09:30 **Sample Matrix:** Soil

Sample Name: 11888 SB03 (5-6) Basis: As Received

Lab Code: R2510162-003

Inorganic Parameters

Analysis **Analyte Name** Method Result Units **MRL MDL** Dil. **Date Analyzed** Q Total Solids ALS SOP 80.7 08/29/25 10:00 Percent

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: ALS Environmental - US Service Request: R2510162

Project: 11888_Glenfield

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Extraction Method:** EPA 3546

		2-Fluorobiphenyl	Nitrobenzene-d5	p-Terphenyl-d14
Sample Name	Lab Code	18 - 104	12 - 98	26 - 134
11888 SB01 (1-2)	R2510162-001	77	74	98
11888 SB02 (3-4)	R2510162-002	76	72	93
11888 SB03 (5-6)	R2510162-003	71	63	93
Method Blank	RQ2511156-01	64	58	85
Lab Control Sample	RQ2511156-02	68	59	85
Duplicate Lab Control Sample	RQ2511156-03	73	63	91

Analytical Report

Client: ALS Environmental - US Service Request: R2510162

Project:11888_GlenfieldDate Collected:NASample Matrix:SoilDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/Kg

 Lab Code:
 RQ2511156-01
 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1-Methylnaphthalene	61 U	330	61	1	08/25/25 19:22	8/22/25	
1,2,4,5-Tetrachlorobenzene	74 U	330	74	1	08/25/25 19:22	8/22/25	
2-Methylnaphthalene	120 U	330	120	1	08/25/25 19:22	8/22/25	
Acenaphthene	63 U	330	63	1	08/25/25 19:22	8/22/25	
Acenaphthylene	67 U	330	67	1	08/25/25 19:22	8/22/25	
Anthracene	55 U	330	55	1	08/25/25 19:22	8/22/25	
Benz(a)anthracene	49 U	330	49	1	08/25/25 19:22	8/22/25	
Benzo(a)pyrene	88 U	330	88	1	08/25/25 19:22	8/22/25	
Benzo(b)fluoranthene	55 U	330	55	1	08/25/25 19:22	8/22/25	
Benzo(g,h,i)perylene	76 U	330	76	1	08/25/25 19:22	8/22/25	
Benzo(k)fluoranthene	54 U	330	54	1	08/25/25 19:22	8/22/25	
1,4-Dichlorobenzene	55 U	330	55	1	08/25/25 19:22	8/22/25	
Biphenyl	98 U	330	98	1	08/25/25 19:22	8/22/25	
Chrysene	49 U	330	49	1	08/25/25 19:22	8/22/25	
Dibenz(a,h)anthracene	72 U	330	72	1	08/25/25 19:22	8/22/25	
1,4-Dioxane	32 U	66	32	1	08/25/25 19:22	8/22/25	
Dibenzofuran	60 U	330	60	1	08/25/25 19:22	8/22/25	
Fluoranthene	83 U	330	83	1	08/25/25 19:22	8/22/25	
Fluorene	62 U	330	62	1	08/25/25 19:22	8/22/25	
Indeno(1,2,3-cd)pyrene	110 U	330	110	1	08/25/25 19:22	8/22/25	
Naphthalene	62 U	330	62	1	08/25/25 19:22	8/22/25	-
Phenanthrene	47 U	330	47	1	08/25/25 19:22	8/22/25	
Pyrene	55 U	330	55	1	08/25/25 19:22	8/22/25	
2,3,4,6-Tetrachlorophenol	120 U	330	120	1	08/25/25 19:22	8/22/25	
2,4,5-Trichlorophenol	82 U	330	82	1	08/25/25 19:22	8/22/25	
2,4,6-Trichlorophenol	74 U	330	74	1	08/25/25 19:22	8/22/25	
2,4-Dichlorophenol	64 U	330	64	1	08/25/25 19:22	8/22/25	
2,4-Dimethylphenol	59 U	330	59	1	08/25/25 19:22	8/22/25	
2,4-Dinitrophenol	560 U	1700	560	1	08/25/25 19:22	8/22/25	
2,4-Dinitrotoluene	130 U	330	130	1	08/25/25 19:22	8/22/25	
2,6-Dinitrotoluene	72 U	330	72	1	08/25/25 19:22	8/22/25	
2-Chloronaphthalene	66 U	330	66	1	08/25/25 19:22	8/22/25	
2-Chlorophenol	55 U	330	55	1	08/25/25 19:22	8/22/25	
2-Methylphenol	69 U	330	69	1	08/25/25 19:22	8/22/25	
2-Nitroaniline	78 U	1700	78	1	08/25/25 19:22	8/22/25	
2-Nitrophenol	77 U	330	77	1	08/25/25 19:22	8/22/25	
3,3'-Dichlorobenzidine	120 U	330	120	1	08/25/25 19:22	8/22/25	
3- and 4-Methylphenol Coelution	63 U	330	63	1	08/25/25 19:22	8/22/25	
3-Nitroaniline	67 U	1700	67	1	08/25/25 19:22	8/22/25	
4,6-Dinitro-2-methylphenol	190 U	1700	190	1	08/25/25 19:22	8/22/25	
4-Bromophenyl Phenyl Ether	87 U	330	87	1	08/25/25 19:22	8/22/25	
4-Chloro-3-methylphenol	67 U	330	67	1	08/25/25 19:22	8/22/25	
4-Chloroaniline	120 U	330	120	1	08/25/25 19:22	8/22/25	

Printed 11/19/2025 4:15:47 PM

Superset Reference: 25-0000743176 rev 00

Analytical Report

Client: ALS Environmental - US Service Request: R2510162

Project: 11888_Glenfield Date Collected: NA

Sample Matrix: Soil Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/Kg

 Lab Code:
 RQ2511156-01
 Basis: Dry

Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Analysis Method: 8270E **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4-Chlorophenyl Phenyl Ether	71 U	330	71	1	08/25/25 19:22	8/22/25	
4-Nitroaniline	71 U	1700	71	1	08/25/25 19:22	8/22/25	
4-Nitrophenol	170 U	1700	170	1	08/25/25 19:22	8/22/25	
Acetophenone	95 U	330	95	1	08/25/25 19:22	8/22/25	
Atrazine	98 U	330	98	1	08/25/25 19:22	8/22/25	
Benzaldehyde	80 U	1700	80	1	08/25/25 19:22	8/22/25	
Benzoic Acid	520 U	1700	520	1	08/25/25 19:22	8/22/25	
Bis(1-chloroisopropyl) Ether	68 U	330	68	1	08/25/25 19:22	8/22/25	
Bis(2-chloroethoxy)methane	81 U	330	81	1	08/25/25 19:22	8/22/25	
Bis(2-chloroethyl) Ether	65 U	330	65	1	08/25/25 19:22	8/22/25	
Bis(2-ethylhexyl) Phthalate	61 U	500	61	1	08/25/25 19:22	8/22/25	
Butyl Benzyl Phthalate	96 U	330	96	1	08/25/25 19:22	8/22/25	
Caprolactam	73 U	330	73	1	08/25/25 19:22	8/22/25	
Carbazole	54 U	330	54	1	08/25/25 19:22	8/22/25	
Di-n-butyl Phthalate	54 U	330	54	1	08/25/25 19:22	8/22/25	
Di-n-octyl Phthalate	120 U	330	120	1	08/25/25 19:22	8/22/25	
Diethyl Phthalate	59 U	330	59	1	08/25/25 19:22	8/22/25	
Dimethyl Phthalate	63 U	330	63	1	08/25/25 19:22	8/22/25	
Hexachlorobenzene	79 U	330	79	1	08/25/25 19:22	8/22/25	
Hexachlorobutadiene	120 U	330	120	1	08/25/25 19:22	8/22/25	
Hexachlorocyclopentadiene	110 U	330	110	1	08/25/25 19:22	8/22/25	
Hexachloroethane	62 U	330	62	1	08/25/25 19:22	8/22/25	
Isophorone	69 U	330	69	1	08/25/25 19:22	8/22/25	
N-Nitrosodi-n-propylamine	110 U	330	110	1	08/25/25 19:22	8/22/25	
N-Nitrosodiphenylamine	210 U	330	210	1	08/25/25 19:22	8/22/25	
Nitrobenzene	59 U	330	59	1	08/25/25 19:22	8/22/25	
Pentachlorophenol (PCP)	330 U	1700	330	1	08/25/25 19:22	8/22/25	
Phenol	67 U	330	67	1	08/25/25 19:22	8/22/25	
Pyridine	45 U	1700	45	1	08/25/25 19:22	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	64	18 - 104	08/25/25 19:22	
Nitrobenzene-d5	58	12 - 98	08/25/25 19:22	
p-Terphenyl-d14	85	26 - 134	08/25/25 19:22	

QA/QC Report

Client: ALS Environmental - US

Project: 11888_Glenfield

Sample Matrix: Soil

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Units:ug/Kg
Basis:Dry

Service Request: R2510162

Date Analyzed: 08/25/25

Lab Control Sample

Duplicate Lab Control Sample

RQ2511156-02

RQ2511156-03

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1-Methylnaphthalene	8270E	1980	3330	59	2100	3320	63	29-100	6	30
1,2,4,5-Tetrachlorobenzene	8270E	2100	3330	63	2210	3320	66	20-126	5	30
2-Methylnaphthalene	8270E	1870	3330	56	2000	3320	60	29-99	7	30
Acenaphthene	8270E	2300	3330	69	2430	3320	73	41-110	6	30
Acenaphthylene	8270E	2580	3330	77	2700	3320	81	44-122	5	30
Anthracene	8270E	2420	3330	73	2580	3320	78	41-123	6	30
Benz(a)anthracene	8270E	2510	3330	75	2740	3320	83	44-116	9	30
Benzo(a)pyrene	8270E	2820	3330	85	3030	3320	91	56-146	7	30
Benzo(b)fluoranthene	8270E	2390	3330	72	2530	3320	76	47-120	6	30
Benzo(g,h,i)perylene	8270E	2360	3330	71	2530	3320	76	41-129	7	30
Benzo(k)fluoranthene	8270E	2560	3330	77	2770	3320	83	49-124	8	30
1,4-Dichlorobenzene	8270E	1880	3330	56	2060	3320	62	16-83	9	30
Biphenyl	8270E	2180	3330	65	2300	3320	69	24-112	6	30
Chrysene	8270E	2560	3330	77	2770	3320	84	44-119	8	30
1,4-Dioxane	8270E	1390	3330	42	1490	3320	45	10-58	7	30
Dibenz(a,h)anthracene	8270E	2490	3330	75	2700	3320	81	18-146	8	30
Dibenzofuran	8270E	2380	3330	72	2520	3320	76	43-113	6	30
Fluoranthene	8270E	2550	3330	77	2680	3320	81	39-128	5	30
Fluorene	8270E	2400	3330	72	2520	3320	76	40-117	5	30
Indeno(1,2,3-cd)pyrene	8270E	2640	3330	79	2810	3320	85	43-129	6	30
Naphthalene	8270E	1900	3330	57	2010	3320	60	31-93	5	30
Phenanthrene	8270E	2240	3330	67	2380	3320	72	39-120	6	30
Pyrene	8270E	2440	3330	73	2620	3320	79	45-125	7	30
2,3,4,6-Tetrachlorophenol	8270E	2720	3330	82	2960	3320	89	42-117	8	30
2,4,5-Trichlorophenol	8270E	2510	3330	75	2650	3320	80	40-114	5	30
2,4,6-Trichlorophenol	8270E	2390	3330	72	2550	3320	77	33-108	6	30
2,4-Dichlorophenol	8270E	2140	3330	64	2290	3320	69	30-103	7	30
2,4-Dimethylphenol	8270E	2110	3330	63	2170	3320	65	32-100	3	30
2,4-Dinitrophenol	8270E	1800	3330	54	1930	3320	58	10-97	7	30
2,4-Dinitrotoluene	8270E	2560	3330	77	2740	3320	82	53-120	7	30
2,6-Dinitrotoluene	8270E	2540	3330	76	2700	3320	81	48-119	6	30
2-Chloronaphthalene	8270E	2310	3330	69	2430	3320	73	33-103	5	30
2-Chlorophenol	8270E	2070	3330	62	2270	3320	68	26-90	9	30
Drinted 11/10/2025 4:15:49 DM						C	4 D - £	25 00007	12176	20

Printed 11/19/2025 4:15:48 PM Superset Reference:25-0000743176 rev 00

QA/QC Report

Client: ALS Environmental - US

Project: 11888_Glenfield

Sample Matrix: Soil

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Units:ug/Kg
Basis:Dry

Service Request: R2510162

Date Analyzed: 08/25/25

Lab Control Sample

Duplicate Lab Control Sample

RQ2511156-02

RQ2511156-03

Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
2-Methylphenol	8270E	2230	3330	67	2550	3320	7 7 Rec	33-99	13	30
2-Nitroaniline	8270E	2450	3330	74	2580	3320	78	41-119	5	30
2-Nitrophenol	8270E	2000	3330	60	2130	3320	64	24-98	6	30
3- and 4-Methylphenol Coelution	8270E	2410	3330	72	2620	3320	79	32-100	8	30
3-Nitroaniline	8270E	1640 J	3330	49	1710	3320	52	29-105	4	30
4,6-Dinitro-2-methylphenol	8270E	2350	3330	71	2510	3320	76	20-105	7	30
4-Bromophenyl Phenyl Ether	8270E	2450	3330	74	2560	3320	77	37-116	5	30
4-Chloro-3-methylphenol	8270E	2250	3330	68	2430	3320	73	40-116	8	30
4-Chloroaniline	8270E	765	3330	23	705	3320	21	10-87	8	30
4-Chlorophenyl Phenyl Ether	8270E	2340	3330	70	2490	3320	75	42-111	6	30
4-Nitroaniline	8270E	1850	3330	56	2080	3320	63	43-120	12	30
4-Nitrophenol	8270E	2090	3330	63	2200	3320	66	34-116	5	30
Acetophenone	8270E	2010	3330	60	2160	3320	65	23-87	7	30
Benzoic Acid	8270E	1910	3330	57	2060	3320	62	10-126	7	30
Bis(1-chloroisopropyl) Ether	8270E	2200	3330	66	2390	3320	72	22-99	8	30
Bis(2-chloroethoxy)methane	8270E	2130	3330	64	2330	3320	70	38-119	9	30
Bis(2-chloroethyl) Ether	8270E	2030	3330	61	2190	3320	66	23-94	8	30
Bis(2-ethylhexyl) Phthalate	8270E	2760	3330	83	3010	3320	91	38-139	8	30
Butyl Benzyl Phthalate	8270E	2590	3330	78	2790	3320	84	40-134	7	30
Caprolactam	8270E	2030	3330	61	2170	3320	65	21-128	7	30
Carbazole	8270E	2410	3330	72	2610	3320	79	42-131	8	30
Di-n-butyl Phthalate	8270E	2650	3330	80	2860	3320	86	42-141	8	30
Di-n-octyl Phthalate	8270E	2980	3330	90	3290	3320	99	38-143	10	30
Diethyl Phthalate	8270E	2370	3330	71	2550	3320	77	43-118	7	30
Dimethyl Phthalate	8270E	2420	3330	73	2590	3320	78	40-118	7	30
Hexachlorobenzene	8270E	2370	3330	71	2530	3320	76	35-122	7	30
Hexachlorobutadiene	8270E	1910	3330	57	2020	3320	61	28-96	6	30
Hexachlorocyclopentadiene	8270E	2210	3330	66	2380	3320	72	10-111	7	30
Hexachloroethane	8270E	1930	3330	58	2090	3320	63	18-85	8	30
Isophorone	8270E	2150	3330	65	2320	3320	70	39-104	8	30
N-Nitrosodi-n-propylamine	8270E	2120	3330	64	2300	3320	69	30-98	9	30
N-Nitrosodiphenylamine	8270E	2660	3330	80	2800	3320	84	43-130	5	30
Nitrobenzene	8270E	2020	3330	61	2130	3320	64	31-99	5	30
D 1 . 1 11/10/2025 4 15 40 D) 5						G	. D. C	25 00005	10176	

Printed 11/19/2025 4:15:48 PM Superset Reference:25-0000743176 rev 00

QA/QC Report

Client: ALS Environmental - US

Project: 11888_Glenfield

Sample Matrix: Soil

Service Request: R2510162 Date Analyzed: 08/25/25

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS using Microwave Digestion

Units:ug/Kg
Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2511156-02

RQ2511156-03

	Analytica		Spike			Spike		% Rec		RPD
Analyte Name	l Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Pentachlorophenol (PCP)	8270E	1960	3330	59	2120	3320	64	36-138	8	30
Phenol	8270E	2180	3330	65	2320	3320	70	31-100	7	30
Pyridine	8270E	3650	6650	55	3880	6640	58	12-80	6	30

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: ALS Environmental - US Service Request: R2510162

Project: 11888_Glenfield

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Extraction Method:** EPA 3546

		Decachlorobiphenyl	Tetrachloro-m-xylene
Sample Name	Lab Code	10 - 159	10 - 132
11888 SB01 (1-2)	R2510162-001	78	64
11888 SB02 (3-4)	R2510162-002	72	56
11888 SB03 (5-6)	R2510162-003	74	43
Method Blank	RQ2511157-01	69	56
Lab Control Sample	RQ2511157-02	89	67
Duplicate Lab Control Sample	RQ2511157-03	72	60

Analytical Report

Client: ALS Environmental - US

Project:11888_GlenfieldDate Collected:NASample Matrix:SoilDate Received:NA

Sample Name:Method BlankUnits: ug/KgLab Code:RQ2511157-01Basis: Dry

Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Analysis Method: 8081B **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
4,4'-DDD	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
4,4'-DDE	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
4,4'-DDT	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Aldrin	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Chlordane	4.2 U	8.3	4.2	1	08/26/25 19:05	8/22/25	
Dieldrin	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Endosulfan I	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Endosulfan II	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Endosulfan Sulfate	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Endrin	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Endrin Aldehyde	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Endrin Ketone	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Heptachlor	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Heptachlor Epoxide	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Methoxychlor	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
Toxaphene	19 U	33	19	1	08/26/25 19:05	8/22/25	
alpha-BHC	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
alpha-Chlordane	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
beta-BHC	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
delta-BHC	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
gamma-BHC (Lindane)	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	
gamma-Chlordane	0.84 U	1.7	0.84	1	08/26/25 19:05	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
Decachlorobiphenyl	69	10 - 159	08/26/25 19:05		
Tetrachloro-m-xylene	56	10 - 132	08/26/25 19:05		

Service Request: R2510162

QA/QC Report

Client: ALS Environmental - US

Project: 11888_Glenfield

Sample Matrix: Soil

Duplicate Lab Control Sample Summary Organochlorine Pesticides by Gas Chromatography using Microwave Extraction

Units:ug/Kg Basis:Dry

Service Request: R2510162

Date Analyzed: 08/26/25

Lab Control Sample

Duplicate Lab Control Sample

RQ2511157-02

RQ2511157-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
4,4'-DDD	8081B	6.85	6.60	104	5.14	6.59	78	48-121	28	30
4,4'-DDE	8081B	6.08	6.60	92	5.34	6.59	81	51-119	13	30
4,4'-DDT	8081B	7.19	6.60	109	4.95	6.59	75	51-126	37*	30
Aldrin	8081B	5.92	6.60	90	5.01	6.59	76	45-109	17	30
Dieldrin	8081B	6.24	6.60	95	5.32	6.59	81	56-111	16	30
Endosulfan I	8081B	5.74	6.60	87	4.81	6.59	73	54-109	18	30
Endosulfan II	8081B	6.35	6.60	96	5.02	6.59	76	50-116	23	30
Endosulfan Sulfate	8081B	6.42	6.60	97	5.25	6.59	80	55-115	20	30
Endrin	8081B	6.53	6.60	99	5.11	6.59	78	49-124	24	30
Endrin Aldehyde	8081B	7.79	6.60	118	5.67	6.59	86	21-139	31*	30
Endrin Ketone	8081B	6.96	6.60	105	5.27	6.59	80	50-124	28	30
Heptachlor	8081B	6.61	6.60	100	5.26	6.59	80	43-115	23	30
Heptachlor Epoxide	8081B	6.26	6.60	95	5.32	6.59	81	53-113	16	30
Methoxychlor	8081B	8.71	6.60	132	6.10	6.59	93	47-141	35*	30
alpha-BHC	8081B	5.92	6.60	90	4.95	6.59	75	44-109	18	30
alpha-Chlordane	8081B	6.05	6.60	92	4.91	6.59	74	52-114	21	30
beta-BHC	8081B	6.11	6.60	93	5.15	6.59	78	49-119	17	30
delta-BHC	8081B	6.20	6.60	94	5.22	6.59	79	49-113	17	30
gamma-BHC (Lindane)	8081B	6.10	6.60	93	5.13	6.59	78	43-112	17	30
gamma-Chlordane	8081B	6.45	6.60	98	5.41	6.59	82	51-117	18	30

QA/QC Report

Client: ALS Environmental - US Service Request: R2510162

Project: 11888_Glenfield

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Extraction Method:** EPA 3546

		Decachlorobiphenyl	Tetrachloro-m-xylene
Sample Name	Lab Code	10 - 138	11 - 122
11888 SB01 (1-2)	R2510162-001	87	70
11888 SB02 (3-4)	R2510162-002	80	63
11888 SB03 (5-6)	R2510162-003	82	48
Method Blank	RQ2511157-01	78	58
Lab Control Sample	RQ2511157-04	81	68
Duplicate Lab Control Sample	RO2511157-05	86	70

Analytical Report

Client: ALS Environmental - US Service Request: R2510162

Project:11888_GlenfieldDate Collected:NASample Matrix:SoilDate Received:NA

 Sample Name:
 Method Blank
 Units: ug/Kg

 Lab Code:
 RQ2511157-01
 Basis: Dry

Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Analysis Method: 8082A **Prep Method:** EPA 3546

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	17 U	33	17	1	08/26/25 20:51	8/22/25	
Aroclor 1221	26 U	67	26	1	08/26/25 20:51	8/22/25	
Aroclor 1232	19 U	33	19	1	08/26/25 20:51	8/22/25	
Aroclor 1242	17 U	33	17	1	08/26/25 20:51	8/22/25	
Aroclor 1248	18 U	33	18	1	08/26/25 20:51	8/22/25	
Aroclor 1254	17 U	33	17	1	08/26/25 20:51	8/22/25	
Aroclor 1260	17 U	33	17	1	08/26/25 20:51	8/22/25	
Aroclor 1262	17 U	33	17	1	08/26/25 20:51	8/22/25	
Aroclor 1268	17 U	33	17	1	08/26/25 20:51	8/22/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	78	10 - 138	08/26/25 20:51	
Tetrachloro-m-xylene	58	11 - 122	08/26/25 20:51	

QA/QC Report

Client: ALS Environmental - US

Project: 11888_Glenfield Date Analyzed: 08/26/25

Sample Matrix: Soil

Duplicate Lab Control Sample Summary Polychlorinated Biphenyls (PCBs) by GC using Microwave Extraction

Units:ug/Kg
Basis:Dry

Service Request: R2510162

Lab Control Sample

Duplicate Lab Control Sample

RQ2511157-04

RQ2511157-05

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Aroclor 1016	8082A	138	166	83	134	166	81	34-141	3	30
Aroclor 1260	8082A	145	166	87	146	166	88	30-158	<1	30

QA/QC Report

Client: ALS Environmental - US Service Request: R2510162

Project: 11888_Glenfield

Sample Matrix: Soil

SURROGATE RECOVERY SUMMARY Chlorinated Herbicides by GC

Analysis Method: 8151A **Extraction Method:** Method

		DCAA
Sample Name	Lab Code	10 - 151
11888 SB01 (1-2)	R2510162-001	56
11888 SB02 (3-4)	R2510162-002	56
11888 SB03 (5-6)	R2510162-003	37
Method Blank	RQ2511320-01	60
Lab Control Sample	RQ2511320-02	55
Duplicate Lab Control Sample	RO2511320-03	61

Analytical Report

Client: ALS Environmental - US

Service Request: R2510162 **Project:** 11888_Glenfield **Date Collected:** NA

Sample Matrix: Soil Date Received: NA

Sample Name: Method Blank Units: ug/Kg Basis: Dry Lab Code: RQ2511320-01

Chlorinated Herbicides by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
2,4,5-T	5.0 U	10	5.0	1	08/28/25 19:28	8/26/25	
2,4,5-TP	4.5 U	10	4.5	1	08/28/25 19:28	8/26/25	
2,4-D	6.5 U	10	6.5	1	08/28/25 19:28	8/26/25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
DCAA	60	10 - 151	08/28/25 19:28	

QA/QC Report

Client: ALS Environmental - US

Project: 11888_Glenfield

Sample Matrix: Soil

Service Request: R2510162 Date Analyzed: 08/28/25

Duplicate Lab Control Sample Summary Chlorinated Herbicides by GC

Units:ug/Kg
Basis:Dry

Lab Control Sample

Duplicate Lab Control Sample

RQ2511320-02

RQ2511320-03

	Analytical		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
2,4,5-T	8151A	15.5	24.9	62	17.6	24.9	71	19-127	13	30
2,4,5-TP	8151A	13.3	24.9	53	15.6	24.9	63	18-122	16	30
2,4-D	8151A	12.0	24.9	48	13.9	24.9	56	31-119	15	30

Confirmation Results

Client: ALS Environmental - US

Project: 11888_Glenfield

Matrix: Soil

Sample Name: Lab Control Sample

Lab Code: RQ2511320-02

Service Request: R2510162

Date Collected: NA

Date Received:

Units: ug/Kg

Basis: Dry

Chlorinated Herbicides by GC

Analytical Method: 8151A **Prep Method:** Method

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
2,4,5-T	5.0	15.5	14.9	4		1	08/28/25 19:47
2,4,5-TP	4.5	13.3	13.6	2		1	08/28/25 19:47
2,4-D	6.5	12.0	13.8	14		1	08/28/25 19:47

Confirmation Results

Client: ALS Environmental - US

Service Request: R2510162

Project: 11888_Glenfield

Date Collected: NA

Matrix: Soil

Date Received:

Sample Name: Duplicate Lab Control Sample

Lab Code: RQ2511320-03

Units: ug/Kg **Basis:** Dry

Chlorinated Herbicides by GC

Analytical Method: 8151A **Prep Method:** Method

		Primary	Confirmation			Dilution	
	MDL	Result	Result	RPD	Q	Factor	Date Analyzed
2,4,5-T	5.0	17.6	17.7	<1		1	08/28/25 20:05
2,4,5-TP	4.5	15.6	15.8	1		1	08/28/25 20:05
2,4-D	6.5	13.9	16.3	16		1	08/28/25 20:05

Service Request No:R2510162

Bill Carey ALS Environmental - Holland 3352 128th Avenue Holland, MI 49424

Laboratory Results for: 11888_Glenfield

Dear Bill,

Enclosed are the results of the sample(s) submitted to our laboratory August 20, 2025 For your reference, these analyses have been assigned our service request number **R2510162**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7476. You may also contact me via email at Chris.Leavy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Christopher Leavy Project Manager

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

October 20, 2025

Ryan Montri The Mannik & Smith Group, Inc. 2365 Haggerty Road South Suite 100 Canton, MI 48188

Re: **DETR0060**Date Received: 10/10/2025

Work Order: **HN2515057**

Dear Ryan,

Enclosed are the results of the sample(s) submitted to our laboratory.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

If you have any questions regarding this report, please feel free to contact me: ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Dale Schipper /S/ DALE SCHIPPER

Project Manager

Client: The Mannik & Smith Group, Inc. Work Order: HN2515057

Project: DETR0060 Date Received: 10-Oct-2025

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt

1 soil/solid sample was received for analysis at ALS Environmental on 10-Oct-2025. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

SAMPLE SUMMARY

Client: The Mannik & Smith Group, Inc.

Project: DETR0060 **Workorder:** HN2515057

Laboratory Sample ID Client Sample ID		Sample Matrix	Collection Date	Date Received
HN2515057-001	11888 Glenfield SB03 TCLP	SOIL/SOLID	10/09/25 10:25	10/10/25 07:00

REPORT QUALIFIERS AND DEFINITIONS

- * Value exceeds Regulatory Limit (if MCL displayed)
- a Analyte is non-accredited
- B Analyte detected in the associated Method Blank above the Reporting Limit
- E Value above quantitation range
- H Analyzed outside of Holding Time
- J Analyte is present at an estimated concentration between the MDL and Report Limit
- NC Not Calculated
- ND Not Detected at the Reporting Limit
- O Sample amount is > 4 times amount spiked
- P Dual Column results percent difference > 40%
- R RPD above laboratory control limit
- S Spike Recovery outside laboratory control limits
- U Analyzed but not detected above the MDL
- V The Continuing Calibration Verification was outside of control criteria
- X Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level.

Holland Laboratory Certifications¹

Tionand Laboratory Certifications												
Agency	Type	ID	Issued	Expires								
Alabama	Drinking Water (Secondary)	42500	12/17/2024	12/31/2025								
Colorado	UST		07/01/2025	06/30/2026								
Connecticut	Drinking Water (Secondary)	PH-0155	12/10/2024	12/31/2026								
Florida	NELAP (Primary)	E871106	07/01/2025	06/30/2026								
Illinois	NELAP (Secondary)	200076	11/14/2024	12/31/2025								
Indiana	Drinking Water (Secondary)	C-MI-08	12/31/2024	09/04/2026								
Iowa	State Specific	403	09/18/2023	09/01/2025								
Kansas	NELAP (Secondary)	E-10411	07/09/2024	07/31/2025								
Kentucky	Waste Water	KY98004	12/20/2024	12/31/2025								
Kentucky	UST	120474	06/24/2024	06/30/2025								
Michigan	Drinking Water (Primary)	0022	12/19/2023	09/04/2026								
Minnesota	NELAP (Secondary)	026-999-449	12/17/2024	12/31/2025								
Missouri	Drinking Water (Secondary)	01262	11/14/2024	12/30/2027								
New Jersey	NELAP (Secondary)	MI015	07/01/2024	6/30/2025								
New York	NELAP (Secondary)	12128	04/01/2025	04/01/2026								
North Dakota	State Specific	R-192	11/18/2024	06/30/2025								
Ohio	Drinking Water (Secondary)	87783	06/26/2025	6/30/2026								
Pennsylvania	NELAP (Secondary)	68-03827	06/14/2024	07/31/2025								
Texas	NELAP (Secondary)	T104704494	02/12/2025	01/31/2026								
USDA	Domestic CA	Soil-MI-007	02/06/2025	08/07/2026								
USDA	Soil Import	525-23-62-77572	03/03/2023	03/03/2026								
West Virginia	State Specific	355	06/07/2025	08/31/2026								
Wisconsin State Specific		399084510	08/15/2024	08/31/2025								

^{1 -} Scope available upon request

Analytical Report

 Client:
 The Mannik & Smith Group, Inc.
 Work Order:
 HN2515057

 Project:
 DETR0060
 Date Collected:
 10/09/25 10:25

 Matrix:
 SOIL/SOLID
 Date Received:
 10/10/25 07:00

CLIENT ID: 11888 GI	Lab ID:	HN2515057-00	1				
Analyte	Method	Results	Qual Units	MRL	Dilution Factor	Date Analyzed	Date Extracted
TCLP Metals							
Arsenic	EPA 6020B	ND	mg/L	0.0499	1 10/17/25	5 00:27 10/16/2	5 10:34
Chromium	EPA 6020B	ND	mg/L	0.0499	1 10/17/25	5 00:27 10/16/2	5 10:34

QA/QC Report

Client: The Mannik & Smith Group, Inc. Work Order: HN2515057

Project:DETR0060Date Collected: NAMatrix:SOIL/SOLIDDate Received: NA

QC Lot: 2278706 Run ID: 3595179

TCLP Metals

MB CLIENT ID: Method Blank Lab ID: QC-2278706-001

Prep Date: 10/16/25 10:35

Spike Spike Ref. % Rec RPD
Analyte Result Units MRL Amount Amount % Rec Limits RPD Limit Qual

 Arsenic
 ND
 mg/L
 0.0499

 Chromium
 ND
 mg/L
 0.0499

LCS CLIENT ID: Laboratory Control Sample Lab ID: QC-2278706-002

Method: EPA 6020B **Dilution:** 1 **Analysis Date:** 10/17/25 00:08

Prep Date: 10/16/25 10:35

Spike Spike Ref. % Rec **RPD** Analyte Result Units **MRL** Amount Amount % Rec Limits **RPD** Limit Qual Arsenic 1.05 mg/L 0.0499 105 80-120 Chromium 1.01 mg/L 0.0499 101 80-120

The following samples were analyzed in this batch: HN2515057-001

ANALYST SUMMARY

Client: The Mannik & Smith Group, Inc. Work Order: HN2515057

Project: DETR0060

Sample Name: 11888 Glenfield SB03 TCLP Date Collected: 10/09/25

Laboratory Code: HN2515057-001 **Date Received:** 10/10/25

Sample Matrix: SOIL/SOLID

Analysis Method Preparation Method Container ID Preparation Lot Prepared By Analysis Lot Analyzed By

ζ	7
¢	\vdash
	0
,	œ
١	-
	O.
	бĎ
	ಡ
ſ	٦.

ALS Environmental

Laboratory	location:

Page _	of		
--------	----	--	--

				ALS Project M	anager:							Work C	Order #:			
	Cu	tomer Information		Project Inf						Pa	ramete	r/Meth	od Request	for Anal	/sis	
	Purchase Order		Project	Name \\ 88	8 Glen	field		A	TCL	PA	Ben	C				
	Work Order	Quote ID - 11631	Project N	Project Number DETR0060				в –	TU	PC	NON	NUM	•			
	Company Name	Mannik Smith Group	Bill To Co	mpany Mannik Sr	nith Group			С								
	Send Report To	Ryan Montri	Invoic	e:Attn.				D								
	Address	2365 South Haggerty Road	A	2365 Sout	h Haggerty	Road		E F	Environmental Division Holland Work Order Reference HN2515057						sion	
	City/State/Zip	Canton, Mi 48188	City/Sta	te/Zip Canton, N	li 48188			G					Work	Order F	eferenc	e
	Phone	734-397-3100		Phone 734-397-3	100			н						CZV	150:	57
	Fax			Fax										IL NUL	W/T . m	lini -
	e-Mail Address	rmontri@manniksmithgroup.com	e-Mail A	dress				ú								\parallel
No.		Sample Description	Date	Time	Matrix	Pres.	# Bottles	A	В	С	D	E				id
1	11888 GL	nfield SB03 TCLP	10/9/25	1025	Soil		2	X	X			į e	Telephone		nič	_
2													Telephone: +	1 616 399 (8070	
3																
4																
5																
6																
7																
8											_					
9											_					
10	ler(s): Please Print	· • · • · · · · · · · · · · · · · · · ·	Shine	nent Method:	IPog	uired Turn	around Tin				011		IRA	ults Due	Data	
S	rennur L	ecomorel Mm	flow?			STD 10 Wk		5 Wk D		2 Wk [Other Days	24 H	our	With Dide	Jate,	
Ų	puished by:	Manual 10/0/2	Time:	Received by					tes: 25 to	Bru	tou	10/10	700			
Relind	Juished by:	Date:	Time:	Received by (Lal	ooratory):			Co	oler Tem	p. OC P	10.11.11.11.11		k Box Below)			
2	d by (Laboratory)	[] / 9/	25 790 Time:	Checked by (Lab	oratory):			IR7		Level II:			ndard ΩC TRRP-Checklist QC + Raw Data TRRP Level IV			
Logge	o by (Laboratory)	BH 10/1012		- III was by the control of the cont				IK	1.90				6 CLP-Like		IKKP	reagn in
Preser	vative Key: 1-HCL	2-HN03 3-H2SO4 4-NaOH 5-	Na25203 6-NaHSO4	7-Other 8-4 deg	rees C 9-50	35					Othe	r:				

Note: Any changes must be made in writing once samples and COC Form have been submitted to ALS Laboratory Group.

Signature denotes acceptance of ALS Group USA, Corp. Terms and Conditions - Please click the link below for detailed Terms & Conditions:

ALS Holland Sample Receiving Checklist

Received by:	ButtongoH
Date/Time:	10/10175 0700
Carrier Name:	_QS
Shipping container/cooler in good condition?	Yes/ No / Not Present
Custody seals intact on shipping container/cooler?	Yes / No / Not Present
Custody seals intact on sample bottles?	Yes / No / Not Present
Chain of Custody present?	Yes)/No
COC signed when relinquished and received?	Yes / No
COC agrees with sample labels?	(€ s / No
Samples in proper container/bottle?	Yes / No
Sample containers intact?	Ves / No
Sufficient sample volume for indicated test?	Yes / No
All samples received within holding time?	Ces / No
Container/Temp Blank temperature in compliance?	Wes/No
Temperature(s) (°C):	1.9/1.9c
Thermometer(s):	187
Sample(s) received on ice?	Yes / No
Matrix/Matrices:	2011
Cooler(s)/Kit(s):	
Date/Time sample(s) sent to storage:	10/10/25 14:24
Water - VOA vials have zero headspace?	Yes / No / No Vials
Water – pH acceptable upon receipt?	Yes / No / N/A
pH strip lot #: < 2	> 12 Other
pH adjusted (note adjustments below)?	Yes / No / N/A
pH adjusted by:	
Login Notes:	