East Side Stormwater Resiliency Planning Study

Visioning Session

For Discussion Purposes Only - Any future project will require allocated funding and necessary government body approvals.

Agenda

- Greetings and Introductions
- How the Sewer System Functions
- Planning Study Overview
- Potential Solutions & Design Concepts
- Next Steps

Visioning Session Purpose

- To share updates on technically feasible stormwater management strategies for Detroit's east side neighborhoods, developed from your input in Spring 2025.
- Collaboratively review and discuss these solutions to ensure they reflect your vision for the future of your neighborhoods.

Project TeamIntroductions

Detroit Water and Sewerage Department

Lisa Wallick (Field Services Director)
Barry Brown II (Compliance Engineering Manager)
Bryan Peckinpaugh (Director of Public Affairs)
Sonali Patel (Infrastructure Communications Manager)
Anna Timmis (Project Engineer)
Grayson Obey (Project Engineer)
Juliana Witt (Project Engineer)

OHM Advisors (Consultant)

Patrick Droze (Project Manager)
Liz Whiddon (Project Engineer)
Madison Merzlyakov (Communications)

Drummond Carpenter (Consultant)

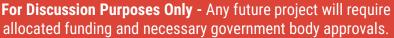
Donald Carpenter (Project Manager & Grant Administration) **Rachel Pieschek** (Project Engineer) **Nathan Zgnilec** (Project Engineer)

How the Sewer System Functions

Detroit Sewer System: Private Portion

You Own

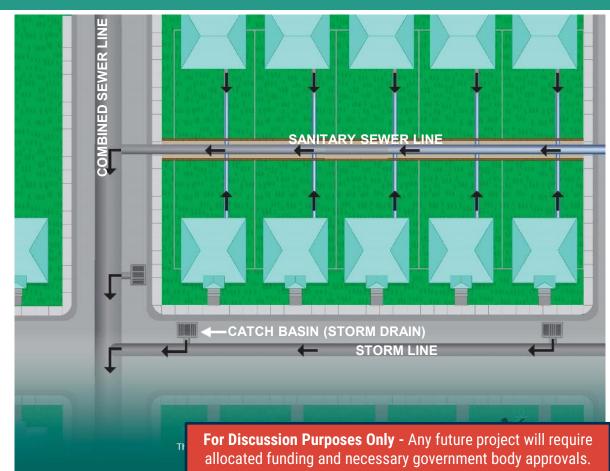
Less than 20% of homes in Detroit have the sewer service line in front of the house, including some parts of Jefferson Chalmers and in several westside neighborhoods.


We Own

What is stormwater?

Rainfall and snowmelt flow from impervious/hard surfaces into the combined sewer system. Impervious surfaces include:

- Roofs
- Streets
- Sidewalks
- Driveways
- Parking lots



Combined Sewer System

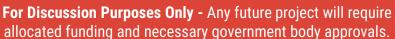
The combined sewer system is separate from the water system untreated sewage and stormwater is collected in pipes, pumped and treated at nine wet weather facilities, and full treatment at the **GLWA Water Resource** Recovery Facility.

Stormwater Management Strategies

Infrastructure Options to Manage Stormwater

Small-Scale Green Infrastructure

Local stormwater runoff is managed with **small-scale natural systems**. Soils and plants soak up stormwater where it falls before it can enter and overwhelm the combined sewer system.

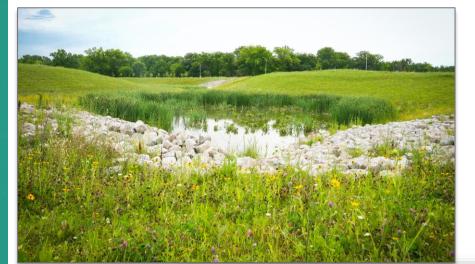


Local Examples of Small-Scale GSI

Infrastructure Options to Manage Stormwater

Large-Scale Green Infrastructure

Large-scale GSI captures stormwater runoff from a much larger area and can benefit multiple tributaries along a river rather than just localized areas.



Local Examples of Large-Scale GSI

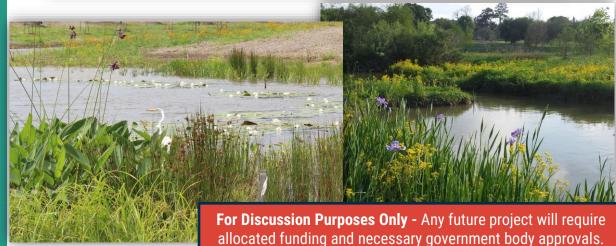
Far West Stormwater
 Improvement Project in D7

For Discussion Purposes Only - Any future project will require

allocated funding and necessary government body approvals.

Local Examples of Large-Scale GSI

Chandler Park Marsh


allocated funding and necessary government body approvals.

National Examples of Large-Scale GSI

 Exploration Green in Clear Water (Houston, TX)

National Examples of Large-Scale GSI

 North Carolina Museum of Art Stormwater Pond (Raleigh, NC)

Infrastructure Options to Manage Stormwater

Grey Infrastructure

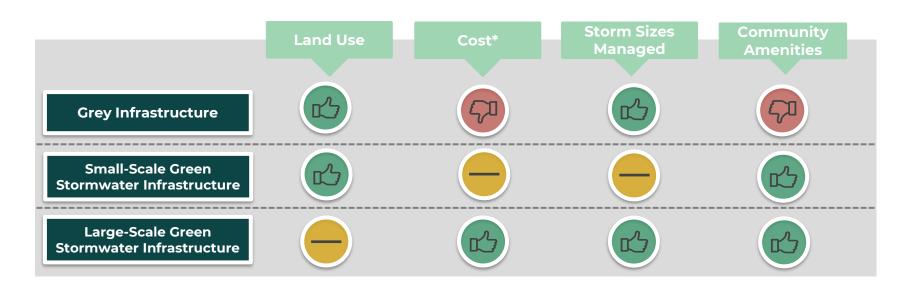
Stormwater runoff is managed with **traditional structures** such as underground sewers, underground basins, or water treatment plants which require pumps, gates, concrete tanks, chemical treatment, odor control, etc.

Little land use required

High cost for rate-payers

Manages a variety of storm sizes

Does not include green spaces or visible community amenities



Comparison of Different Infrastructure Options

^{*}DWSD evaluates all options and works towards the most cost-effective option to reduce impacts on rate payers.

East Side Stormwater Resiliency Planning Study

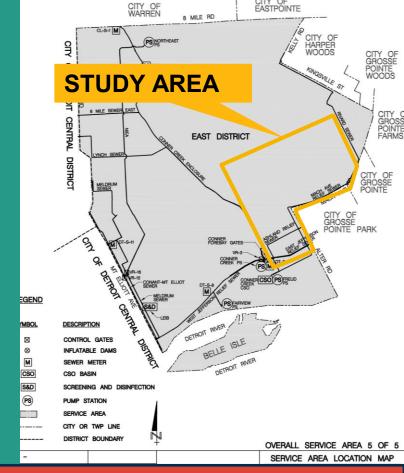
Grant Funding

DWSD has secured two grants totaling \$660,000 which fully fund the East Side Stormwater Resiliency Study. Together, the grants allow for DWSD to advance the study without any use of ratepayer dollars.

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

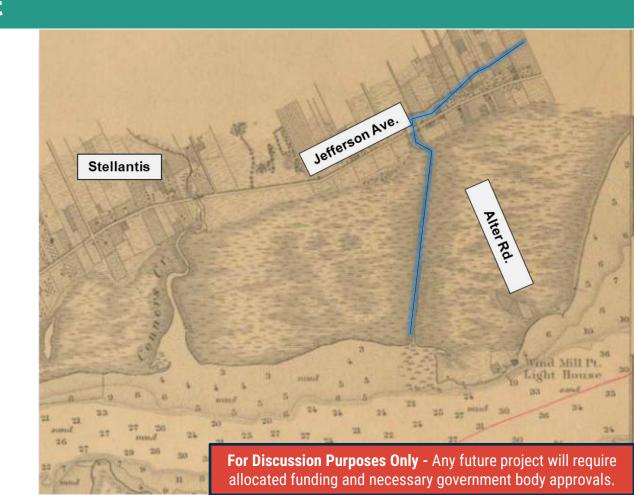
\$480,000 - High Water Resiliency Grant

\$180,000 - High Water Resiliency Grant



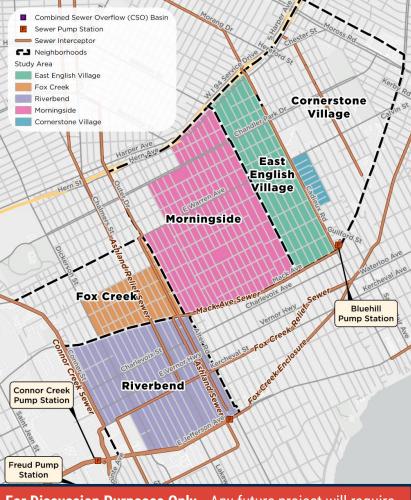
East Side Sewer System

Detroit's east side sewer district is a 27 square mile area which collects and conveys sewage towards Connor Creek which is the lowest point in the east side system.


During wet weather events, these areas experiences extreme flooding due to its elevation.

Historical Context

- Neighborhood in 1876
- Mostly marshland
- Quickly developed and built out by 1937


Planning Study Goals

The East Side Stormwater Planning Study will develop a plan and strategy for implementing feasible, affordable, near-term nature-based solutions for catastrophic flooding in Detroit.

This is a study, not a construction project. The study is not focused on areas outside the designated project area.

Drainage Area	Area (Acres)
East English Village	404
Fox Creek	202
Riverbend	665
Morningside	823
Cornerstone Village	47
TOTAL	2.141

Holistic Project Objectives

Flood Risk Reduction

Divert stormwater from the combined sewer system to reduce water in basements and street flooding

Vater & Sewerage

Infrastructure Resiliency

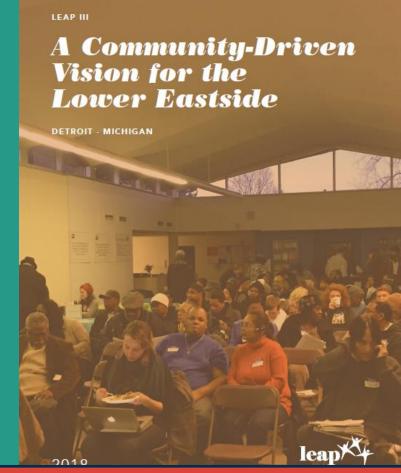
Find cost effective improvements in the DWSD and GLWA sewer system to reduce wet weather impacts

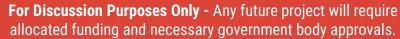
Water Quality

Improve water quality within the Fox Creek and east side canal network

Community Benefits

Enhance opportunity on the east side of Detroit through the creation of green stormwater infrastructure public spaces


Planning Study Timeline



Review of Past Planning

- LEAP III A Community-Driven Vision for the Lower Eastside
- East Warren/Cadieux Framework Plan
- USACE Flood Risk Reduction Study for Jefferson-Chalmers
- Mack Avenue Improvement Plan

Previous Community Engagement

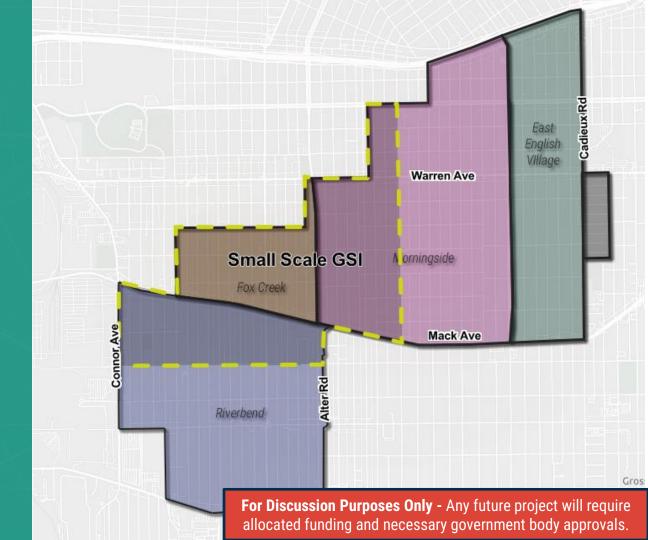
- 4 Community Meetings in Spring 2025
- Lawn signs with meeting information
- Emails to community leaders
- 28 Attendees:
 - o Morningside: 4
 - East English Village: 4
 - Fox Creek: 1
 - o Riverbend: 1
 - Cornerstone Village: 1
 - Other/Unknown: 17
- Presentation at East English Village Monthly Meeting (6/17) and D4 Community Meeting (7/21)

Spring 2025 Community Meetings – What We Heard

- Support for using vacant land to manage stormwater, with interest in projects including amenities like gardens, wetlands, and educational spaces.
- Rain gardens are widely supported, especially in vacant lots and medians.
- Support for removing underutilized roads to reduce flooding, provided it doesn't displace residents or disrupt traffic flow.
- Desire for education around stormwater, collaboration with businesses and schools.
- Concerns about continued maintenance.

WORKSHOP: Potential Solutions and Design Concepts

Technical Feasibility Evaluation


Small Scale GSI: Rain Gardens

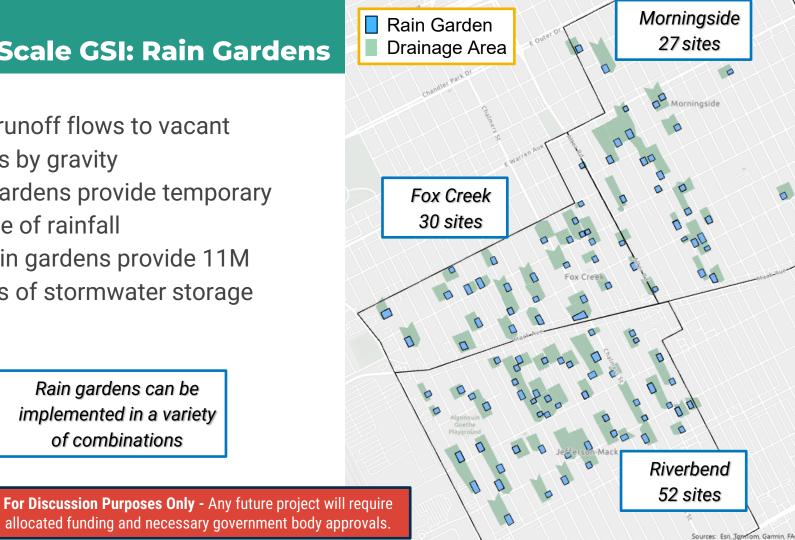
- Viable in areas with vacant land
- Manages stormwater runoff close to where it is generated
- Minimal impact to existing neighborhood land use

Potential Neighborhoods:

- Riverbend
- Fox Creek
- Morningside

Small Scale GSI: Rain Gardens

- Converting vacant parcels to rain gardens
- Utilizing +300 parcels
- 40 acres of vacant land



Small-Scale GSI: Rain Gardens

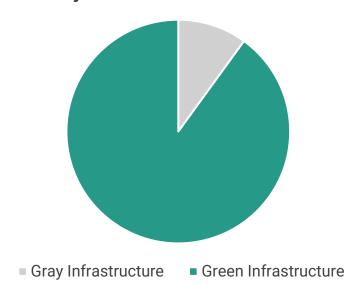
- Local runoff flows to vacant parcels by gravity
- Rain gardens provide temporary storage of rainfall
- 109 rain gardens provide 11M gallons of stormwater storage

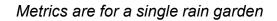
Rain gardens can be implemented in a variety of combinations

Small-Scale GSI: Rain Garden Example

Size of Green Stormwater Infrastructure

Size of Drainage Area Managed


Storm Size Managed

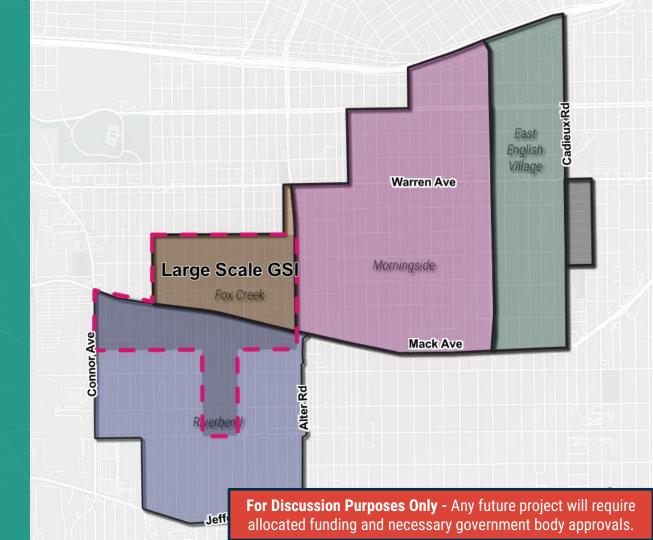

Project Construction Cost

Long Term Maintenance Cost

Time to Implement

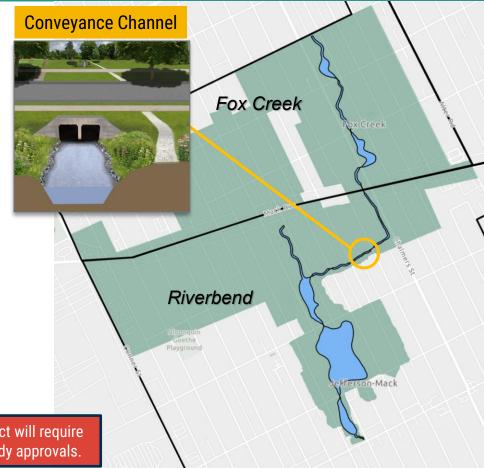
Project Construction Cost

Potential challenges: Availability of land, funding


Large Scale GSI: Stormwater Channels

- Viable in areas with large stretches of vacant land
- Manages stormwater within neighborhoods where it is generated
- Potentially large impacts to existing neighborhood land use

Potential Neighborhoods:

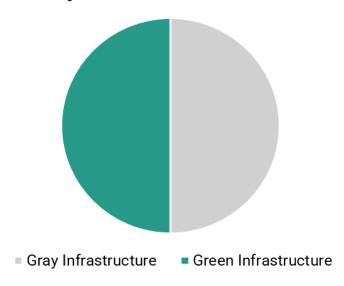

- Riverbend
- Fox Creek
- Morningside

Large-Scale GSI: Stormwater Channels

- 274 total parcels / 42 acres
- Conveyance channels move water from north to south
- Converting vacant parcels to large-scale stormwater detention basins
- Basins capture and hold stormwater during rain events

Large-Scale GSI: Stormwater Channels

- Stormwater discharge options:
 - Into the combined sewer
 - Into the Detroit River using a pump station
 - Into another stormwater practice that connects to the Detroit River or Fox Creek



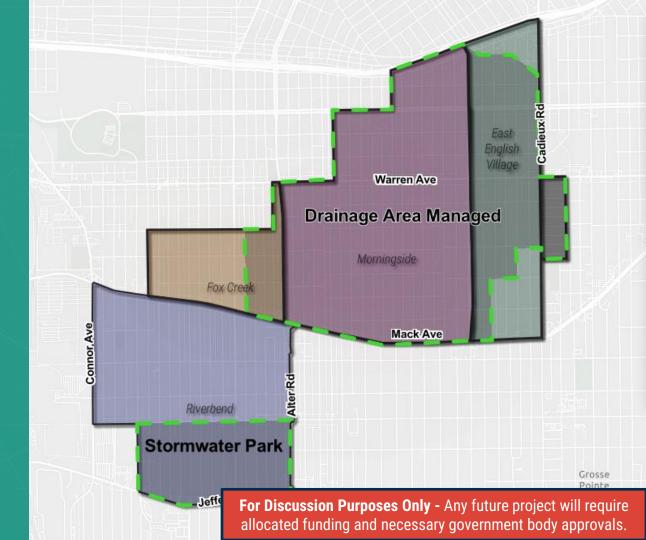
Stormwater Basin

Large-Scale GSI: Stormwater Channels

Size of Green Stormwater Infrastructure	42 Acres
Size of Drainage Area Managed	192 Acres
Storm Size Managed	8888
Project Construction Cost	\$\$\$\$\$
Long Term Maintenance Cost	\$\$\$\$\$
Time to Implement	00000

Project Construction Cost

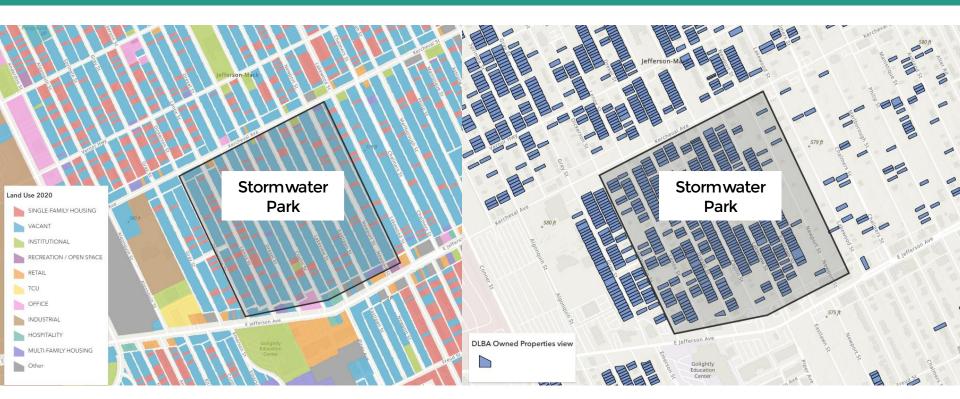
Potential challenges: Availability of land, funding, impact to cost to integrate with GLWA system


Large Scale GSI: Stormwater Park

- Utilizes vacant land in other areas of the City by using existing sewer system.
- No impact to land within managed neighborhoods

Potential Neighborhoods:

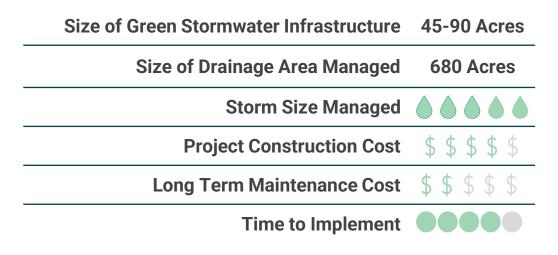
- Morningside
- East English Village
- Cornerstone Village
- Riverbend (for basin)

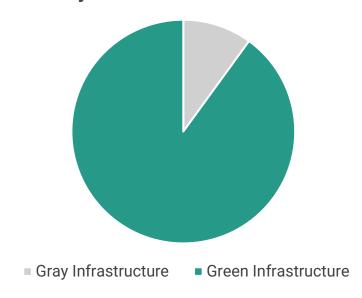


Large Scale GSI: Stormwater Park

- Leverages existing infrastructure to convey stormwater runoff from more than 680-acres
- Adjust more than 52 miles of existing storm pipe
- The Fox Creek enclosure will be converted back to a stormwater only drainage way before discharging into GSI in the Stormwater Park
- The Stormwater Park utilizes vacant land in Riverbend and can provide at least 90-acres of stormwater management practices
- This area to be designed based on resident preference for future land use

Stormwater Park - Current Land Use




Rendering of alternative at future Stormwater Park

Large Scale GSI: Stormwater Park

Project Construction Cost

Potential challenges: Availability of land, funding, impact to cost to integrate with GLWA system

Group Discussion

For each potential solution:

- What questions do you have?
- What do you like the most?
- What do you like the least?
- How do you see yourself using this space?

Next Steps

- Project team will incorporate your feedback and finalize the report.
- Planning studies are a key step in getting funding for construction projects!
- Sign up for emails to stay up to date!

Thank You

Questions or additional feedback?

- 313-267-8000
- dwsd-publicaffairs@detroitmi.gov
- www.detroitmi.gov/DWSD

