

Mr. Hosam Hassanien, PG, CPG City of Detroit Environmental Affairs 2 Woodward Avenue – CAYMC, Suite 401 Detroit, MI 48226 October 31, 2023 NTH Project No. 74-200457-07

RE: Ambient Air Quality Monitoring – 2nd Post-Construction Phase Monitoring Report August 22, 2023 – August 28, 2023
Amazon Distribution Center
Detroit, Michigan

Dear Mr. Hassanien:

The City of Detroit (City) completed a property transaction for a new Amazon Distribution Center constructed on a 137-acre parcel at the former State Fairgrounds property located at 1120 W. State Fair Avenue in Detroit, Michigan. The City contracted NTH Consultants, Ltd. (NTH) to conduct ambient air quality monitoring at the proposed Amazon Distribution Center site (Site).

The monitoring program consists of siting localized monitors at upwind and downwind locations to measure concentrations of particulate matter (PM_{10} and $PM_{2.5}$), nitrogen oxide (NO_x , as NO_2), and volatile organic compounds (VOCs), and to evaluate air quality from the Site during three (3) distinct phases:

- Pre-development baseline period
- Construction phase
- Post-construction facility operation

PRE-DEVELOPMENT BASELINE PERIOD (COMPLETED)

NTH's Baseline Monitoring Report, dated May 7, 2021, presented ambient concentrations prior to significant construction activities at the Site. The baseline period included monitoring data collected by Montrose Air Quality Services, LLC (MAQS), from January 22, 2021 through March 5, 2021, and was supplemented with monitoring data collected by the Site developer's consultant (Langan) from November 13, 2020 through December 2, 2020. The purpose of the Baseline Monitoring Report was to establish an ambient background concentration for each pollutant and use that concentration as a baseline whereas concentrations measured above these levels during construction would trigger the contractor to employ additional mitigation efforts in order to reduce pollutant concentrations.

The concentrations in Table 1 were published in the Baseline Monitoring Report and represent pollutant concentrations prior to the start of significant construction activities. Each concentration is also compared to the applicable National Ambient Air Quality Standards (NAAQS) protective of public health and the environment.

Table 1 - Site	Specific Baseline	Concentrations f	from Pre-Develo	opment Baseline Period

Pollutant	Operator	Monitor ¹	Baseline Concentration	Date of Baseline Concentration	NAAQS	Units
PM ₁₀	Langan	ML2	47	11/25/2020	150	μg/m³
PM _{2.5}	Langan	ML2	22	11/25/2020	35	μg/m³
NO ₂	MAQS	Unit 1480	52	1/30/2021	100	ppb
VOC	Langan	ML1	0.11	11/14/2020	NA^2	ppm

¹ Baseline Monitoring included two (2) Site monitors operated by MAQS for NTH from January 22 through March 5, 2021, and identified as Unit 1479 ("upwind", located to the southwest of the Site) and Unit 1480 ("downwind", located to the northeast of the Site), as well as monitoring data provided by Hillwood Development Company (HDC), the project developers, for the period November 13, 2020 through December 2, 2020 from five (5) monitoring locations at the project Site and identified as ML1, ML2, ML3, ML4 and ML5. For the post-construction phase, Unit 1479 was replaced by Unit 1838, and Unit 1480 was replaced by Unit 1839, as discussed in the 1st Post-Construction Phase Monitoring Report dated August 10, 2023.

CONSTRUCTION PHASE MONITORING (COMPLETED)

NTH's six (6) Construction Phase Monitoring Reports represented ambient concentrations during construction. The reports included monitoring data collected by MAQS and supplemented with monitoring data collected from Michigan Department of Environment, Great Lakes, and Energy (EGLE) monitoring sites. The goal of construction phase monitoring was to collect concentration data of target air pollutants during construction activities consisting of paving, concrete work, steel construction, roofing, interior buildout, electrical work, and plumbing. Construction was completed and the facility was turned over to Amazon in April 2023.

None of the six (6) Construction Phase Monitoring Reports indicated a threat to public health or the environment. PM₁₀, PM_{2.5}, NO₂, and VOCs results were analyzed and compared to baseline concentrations and NAAQS. None of the analyzed parameters exceeded NAAQS during any of the Construction Phase Monitoring events. Particulate matter did exceed baseline concentrations during two (2) of the Construction Phase Monitoring events but was determined to be due to wildfires in the western United States and Canada and sustained local elevated wind speeds.

POST-CONSTRUCTION PHASE MONITORING

The City anticipates that the operation of Amazon Distribution Center may result in direct and fugitive air emissions. Sources of NO_x, VOC, PM₁₀ and PM_{2.5} emissions related to operation may include vehicular traffic (employee vehicles or delivery trucks) or the associated fugitive dust.

The data collected during the 1st post-construction phase air monitoring event were not indicative of a threat to public health or unusual concentrations of the analyzed parameters.

The enclosed report presents the results of the 2nd post-construction phase monitoring event that was conducted for the period of August 22 through August 28, 2023 using two Site monitors identified as Unit 1838 and Unit 1839, which operated simultaneously for seven (7) days. This report describes the monitoring program, objectives, Site overview, monitor locations and equipment, monitoring results, and an overview of data quality assurance. The goal of post-construction phase

² NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NO_x and VOCs in certain ambient conditions (typically hot, sunny weather)

monitoring is to collect concentration data of target air pollutants during regular operation of the facility to assess whether additional mitigation efforts are warranted to reduce pollutant concentrations to below baseline levels.

The monitors were located on opposite sides of the Site and both stations are configured to collect pollutant and meteorological data. An upwind monitor measures pollutant concentrations that have not blown across the Site and should be free from potential impacts of on-site development activity and is representative of local area background concentrations.

The report includes monitoring data from two (2) available sources, including:

- Two (2) Site monitors identified as Unit 1838 ("upwind", located to the southwest) and Unit 1839 ("downwind", located to the northeast) and operated by MAQS for NTH during the monitoring period of August 22 through August 28, 2023.
- Nearby off-site monitors operated by Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the MAQS monitoring period.

As part of this air monitoring program, MAQS collected air monitoring data over this period for NO_x (as NO₂), PM₁₀ and PM_{2.5}, and VOCs at two (2) monitors, along with wind directions and speeds (vectors).

RESULTS OF POST-CONSTRUCTION PHASE MONITORING

As presented below and in the enclosed report, for monitoring conducted August 22 through August 28, 2023, concentrations of PM₁₀, PM_{2.5}, NO_x (as NO₂), and VOC from the on-site monitors are less than their baseline concentrations and NAAQS, as summarized in Table 2. Monitored concentrations of PM₁₀, PM_{2.5} are also less than the 24-hour NAAQS of 150 µg/m³ for PM₁₀, 35 $\mu g/m^3$ for $PM_{2.5}^{-1}$.

For this post-construction phase monitoring event, NTH's objective was to obtain at least seven (7) days of air quality data at the site. Unit 1838 and 1839 both recorded valid PM₁₀ and PM_{2.5} daily averages for seven (7) days.

Table 2 – Summary of Air Monitoring from August 22 through August 28, 2023

Pollutant	Maximum Concentration	Monitor	Date of Maximum Concentration	Baseline Concentration	NAAQS	Units
PM ₁₀	4.5	Unit 1838	8/23/2023	47	150	μg/m³
PM _{2.5}	2.6	Unit 1839	8/23/2023	22	35	μg/m³
NO ₂	27.1	Unit 1839	8/28/2023	52	100	ppb
VOC	0.02	Unit 1838 & 1839	8/26/2023	0.11	NA ¹	ppm

¹ NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NOx and VOCs in certain ambient conditions (typically hot, sunny weather)

In summary, the data collected during this air monitoring event are not indicative of a threat to public health or unusual concentrations of the analyzed parameters.

We appreciate this opportunity to be of service to you. If you have questions or need additional information, please contact us at 248-662-2740.

Sincerely,

NTH Consultants, Ltd.

DocuSigned by:

Christopher O. Occhipinti
Christopher O. Occhipinti Senior Project Professional

COO/BCM/dc

Attachments

DocuSigned by: Bhushan (. Modi

Bhushan C. Modi Project Manager

2nd POST-CONSTRUCTION PHASE MONITORING REPORT AUGUST 22, 2023 – AUGUST 28, 2023 AMAZON FULFILLMENT CENTER (FORMER MICHIGAN STATE FAIRGROUNDS) CITY OF DETROIT DETROIT, MICHIGAN

Prepared For:

NTH Consultants, Ltd. 2990 W. Grand Blvd., Suite M-10 Detroit, MI 48202

Prepared By:

Montrose Air Quality Services, LLC 45 U.S. 46, Suite 601 Pine Brook, NJ 07058

Document Number: **027AA-020300-RT-72**

NTH Project Number: **74-200457-03**

Monitoring Period: August 22, 2023 through August 28, 2023

Submittal Date: September 15, 2023

Table of Contents

PROJECT OVERVIEW	1
Background	1
Objectives	2
Potential Sources	2
Site Overview	
Figure 1-A – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds)	
Figure 1-B – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Property and Nearby MI EGLE Monitoring Stations	te
Monitoring Equipment	6
METEOROLOGICAL DATA COLLECTED	
FIGURE 2-A – Wind Rose From 1838 Monitor	8
FIGURE 2-B – Wind Rose From 1839 Monitor	8
POLLUTANT DATA COLLECTED	10
Figure 3 – PM ₁₀ Data	10
Figure 4 – PM _{2.5} Data	
Figure 5 – NO ₂ Data	
Figure 6 – VOC Data	13
DATA QUALITY ASSURANCE/QUALITY CONTROL	14
Quality Assurance/Quality Control	14
SIGNATURE PAGE	15
APPENDIX	16

- A: Quality Assurance Logs B: Calibration Certification Sheets C: State Monitor Map

Project Overview

Background

NTH Consultants, Ltd. (NTH) has retained Montrose Air Quality Services, LLC (Montrose) to conduct an ambient air quality monitoring program in support of an Amazon Fulfillment Center construction project located on a portion of the former Michigan State Fairgrounds in Detroit, Michigan. The monitoring program collects, validates and reports continuously-measured, hourly-averaged data for a mixture of pollutants that may originate from construction activities at the Site, as well as emissions from vehicular traffic, diesel engines, surface attrition, other sources of dust emissions, and future Site operations.

The monitoring program is conducted in accordance with the schedule, monitoring protocols and procedures contained in approved Monitoring Test Plans. The monitoring program consists of several phases, starting with a pre-construction monitoring period conducted to characterize and establish baseline background concentrations at the Site. Following completion of the Pre-construction monitoring, six (6) one-week monitoring periods were conducted during the construction phase of the project. Construction Phase monitoring commenced in April 2021 and concluded in October, 2021.

The monitoring program will conclude by conducting a total of four (4) one-week Post-Construction monitoring periods. Post-Construction monitoring will be conducted at approximately 3-month intervals.

A summary of the monitoring program and associated deliverables completed to date follows:

- A Pre-Construction "Baseline" Report, dated May 7, 2021 presents data collected from two on-site monitors operated by Montrose supplemented with data collected from selected off-site monitors operated by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) for the period commencing January 22, 2021 and concluding March 5, 2021. The pre-construction monitoring report also incorporated monitoring data collected by the land developer for the period November 13, 2020 through December 2, 2020.
- The first Construction Phase Report, dated June 8, 2021 presents monitoring data collected from two on-site monitors operated by Montrose for the period commencing April 14 and concluding April 21, 2021.
- The second Construction Phase Monitoring Report presents data collected from two on-site monitors operated by Montrose supplemented with data collected from selected off-site monitors operated by the EGLE for the monitoring period commencing on June 20 and concluding on June 27, 2021.
- The third Construction Phase Monitoring Report presents data collected from two on-site monitors operated by Montrose supplemented with data collected from selected off-site monitors operated by EGLE for the monitoring period commencing on July 18 and concluding on July 24, 2021.
- The fourth Construction Phase Monitoring Report presents data collected from two on-site monitors operated by Montrose supplemented with data collected from selected off-site monitors operated by EGLE for the monitoring period commencing on August 15 and concluding on August 21, 2021.
- The fifth Construction Phase Monitoring Report presents data collected from two on-site monitors operated by Montrose supplemented with data collected from selected off-site monitors operated by EGLE for the monitoring period commencing on September 19 and concluding on September 28, 2021.
- The sixth Construction Phase Monitoring Report presents data collected from two on-site monitors operated by Montrose supplemented with data collected from selected off-site monitors operated by EGLE for the monitoring period commencing on October 13 and concluding on October 24, 2021.

- The first Post-Construction Phase Monitoring Report presents data collected from two on-site monitors operated by Montrose supplemented with data collected from selected off-site monitors operated by the EGLE for the monitoring period commencing on May 13 and concluding on May 29, 2023.
- This second Post-Construction Phase Monitoring Report presents data collected from two on-site monitors operated by Montrose supplemented with data collected from selected off-site monitors operated by the EGLE for the monitoring period commencing on August 22 and concluding on August 28, 2023.

Objectives

The specific objectives of the Post-Construction monitoring effort are defined in Section 1.1 of the approved Post-Construction Ambient Air Test Plan for the Amazon Fulfillment Center at the Former Michigan State Fairgrounds dated January 31, 2023. These objectives are to measure ambient concentrations of the following parameters at two (2) monitoring locations at the Site:

- Particulate Matter (PM₁₀) of diameter equal to or less than 10 microns
- Particulate Matter (PM_{2.5}) of diameter equal to or less than 2.5 microns
- Nitrogen Dioxide (NO₂)
- Volatile Organic Compounds (VOC)
- Meteorological parameters (i.e., wind speed, wind direction, temperature, relative humidity, and barometric pressure)

To accomplish these objectives, two air quality and meteorological monitors were deployed at the Site to concurrently collect continuous measurements for the parameters listed above. The Unit 1838 monitor was situated "upwind", located to the southwest (latitude 42.440184°, longitude -83.119514°) and Unit 1839 was situated "downwind", located to the northeast (latitude 42.443536°, longitude -83.111440°), as presented in Figure 1-A. Continuous measurement data collected from each monitor were reduced and reported as hourly block-averaged values.

Potential Sources

Sources of NO₂, VOC, PM₁₀ and PM_{2.5} emissions related to operation may include vehicular traffic and associated fugitive dust.

Operational Staff and Contacts

Facility Information

Monitoring Location: Amazon Fulfillment Center

Former Michigan State Fairgrounds

20110 Woodward Avenue

Detroit, MI 48203

Monitoring Program Coordinator

NTH Consultants, Ltd.

3300 Eagle Run Drive NE, Suite 202

Grand Rapids, MI 49525

Project Contacts: Mr. Chris Occhipinti

Role: Project Professional Company: NTH Consultants, Ltd.

Telephone: 616-951-4774

Email: cocchipinti@nthconsultants.com

Monitoring Team Contact Information

Testing Firm: Montrose Air Quality Services, LLC (Montrose)

Contact: David Cummings
Title: District Manager
Telephone: 201-213-2913

Email: dcummings@montrose-env.com

Contact: Kevin Ruggiero
Title: Sr. Project Manager
Telephone: 973-417-6487

Email: kruggiero@montrose-env.com

Contact: Jeffrey Peitzsch Title: Shop Coordinator Telephone: 313-213-4816

Email: jbpeitzsch@montrose-env.com

Contact: Linda Quigley

Title: Senior Reporting QC Specialist Telephone: 973-575-2555 (Ext. 12707) Email: lquigley@montrose-env.com

Page 4

Site Overview

The Site air quality monitoring was performed at the newly constructed Amazon Fulfillment Center situated on a portion of the former Michigan State Fairgrounds property located at 20110 Woodward Avenue in Detroit, MI. This area was purchased by Hillwood Development Company, LLC (Hillwood) who demolished the existing structures onsite and constructed a large warehouse occupied by the Amazon Fulfillment Center. The locations of the two (2) on-site monitors are identified in Figure 1-A below.

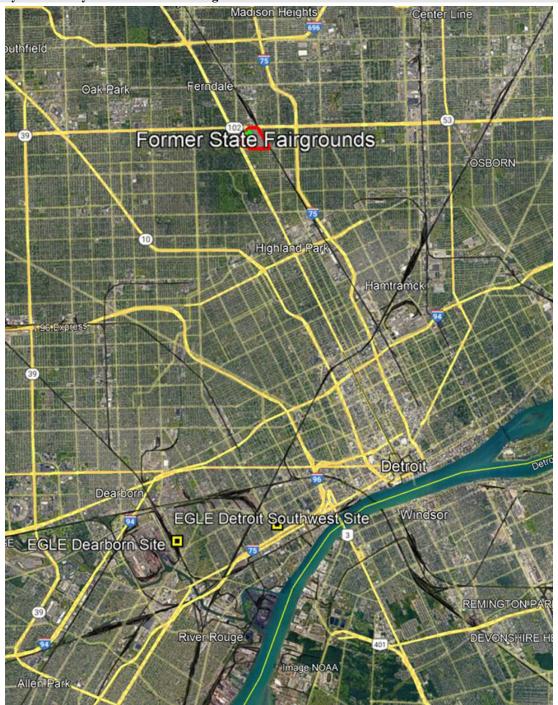

Figure 1-A – Monitor Locations at the Amazon Fulfillment Center (Former Michigan State Fairgrounds)
Property

Figure 1-B is an aerial view of the two monitoring site locations at the Amazon Fulfillment Center (Former Michigan State Fairgrounds) property and two nearby air monitoring stations maintained by the Michigan Department of Environment, Great Lakes, and Energy (EGLE). Monitoring data available from the two nearby EGLE monitoring stations are intercompared in this report with corresponding monitoring data reported from the two monitors operated by Montrose at the former Michigan State Fairgrounds property.

Figure 1-B – Monitor Locations at the Amazon Fulfillment Center (Former Michigan State Fairgrounds) Property and Nearby MI EGLE Monitoring Stations

Monitoring Equipment

Air monitoring at the Amazon Fulfillment Center (former Michigan State Fairgrounds) was performed using two Aeroqual Model AQS-1 Urban Air Quality Monitors. The AQS-1 monitors continuously sample for pollutant parameters by actively pulling in ambient air via a pump and passing the sample air steam over the surface of each sensor. Each AQS-1 monitor used in this project is powered by deep-cycle batteries charged by solar photovoltaic panels. The measurement data are acquired and processed by an inboard, microprocessor-based computer and values are stored in non-volatile, electronic memory. An inboard integrated wireless data modem transmits the data via cellular service to a secure, cloud-based data platform. Monitoring was conducted for the constituents listed in Table 1.

Table 1 - Pollutants Monitored

Air Pollutant/Parameter Category	Principle of Operation
PM ₁₀ and PM _{2.5}	Laser Scattering
NO_2	Electrochemical
VOC	Photoionization
Wind Speed, Wind Direction, Temperature, Relative Humidity, Barometric Pressure	Sonic Anemometer and Various

Measurement of particulate matter (PM_{10} and $PM_{2.5}$) is accomplished using the physical principle of light scattering. As the sample air stream is drawn through a detector module, each single particle in the air stream is illuminated by a defined laser light and each scattering signal is detected at an angle of 90° by a photo diode. In accordance with the Mie theory, each measured pulse height is directly proportional to the particle size, where each pulse is classified in an electronic register of 32 different size channels.

A separate electrochemical sensor measures concentrations of NO₂ via oxidation or reduction reactions in an electrochemical sensor. These reactions generate a positive or negative current flow through an electronic detector circuit. The electrochemical sensor is made up of a working counter and reference electrode. All of these components are situated inside of a sensor housing along with a liquid electrolyte that is specific to the compound of interest, i.e., NO₂.

A Photoionization Detector (PID) sensor is used for detection and measurement of VOC. The PID contains a lamp that produces photons that carry enough energy to break molecules into ions. The PID will only respond to molecules that have an ionization energy at or below the energy of the lamp; the PID used on this project employs a 10.6 electron-volt lamp. The ions produced by the PID generate an electrical current that is measured as the output of the detector.

The continuous monitoring equipment utilized in this project were operated and maintained in accordance with the procedures and quality control elements contained in the <u>Post-Construction Ambient Air Test Plan</u> for the Amazon Fulfillment Center at the Former Michigan State Fairgrounds dated January 31, 2023.

Discussion of Results

The results of PM₁₀, PM_{2.5}, NO₂, and VOC monitoring data are presented in Figures 3 through 6 in this report. These figures also include data for the same time period reported from nearby air monitoring stations maintained by the Michigan Department of Environment, Great Lakes, and Energy (EGLE). The EGLE data contained in this report are from monitors that are routinely subjected to calibration and maintenance. It should be noted that, as of the date of this report, the EGLE data have not yet been processed through

Amazon Fulfillment Center (Former Michigan State Fairgrounds) 2nd Post-Construction Phase Monitoring Report Page 171 A 020300 PT 72

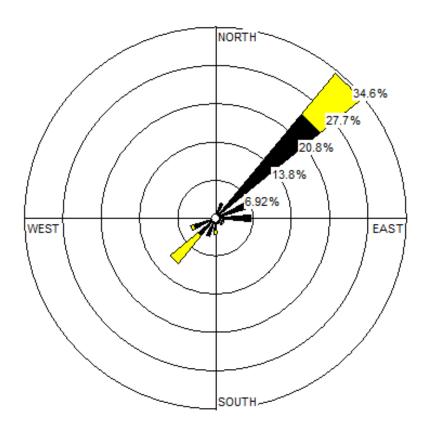
Report ID: 027AA-020300-RT-72 Page 7

EGLE final quality assurance procedures. The monitor locations for EGLE Sites are depicted in Figure 1-B and can also be found on the map provided in Appendix C (*State Monitor Map*).

The Clean Air Act requires EPA to establish National Ambient Air Quality Standards (NAAQS) for certain air pollutants considered harmful to public health and the environment. Air pollutants for which NAAQS are established include NO₂, PM_{2.5} and PM₁₀. NAAQS have not been established for VOCs. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NO_x and VOCs in certain ambient conditions.

The graphed data shown in Figures 3 through 5 present measured concentrations for these pollutants collected during the monitoring period relative to the Baseline concentration and NAAQS Standard.

The NAAQS for NO₂, PM_{2.5}, and PM₁₀ were not exceeded during the monitoring period addressed in this report.


Electronic records of all data and calibrations have been uploaded to the Montrose Data Server, where they will be archived for a period of at least three (3) years.

Meteorological Data Collected

Figures 2-A and 2-B present wind roses derived from the meteorological data collected from each of the two monitors operated at the former State Fairgrounds over the course of the monitoring period of 8/22/23 to 8/28/23.

Figure 2-A – Wind Rose From 1838 Monitor

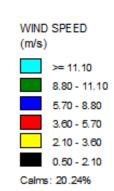
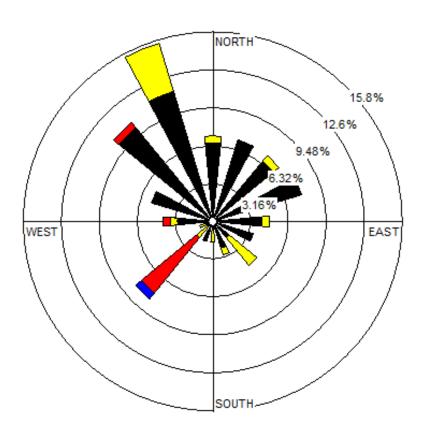



Figure 2-B – Wind Rose From 1839 Monitor

As is evident from the wind rose data, predominant winds were from the north during the monitoring period. Wind speeds recorded at monitors 1838 and 1839 were generally very light.

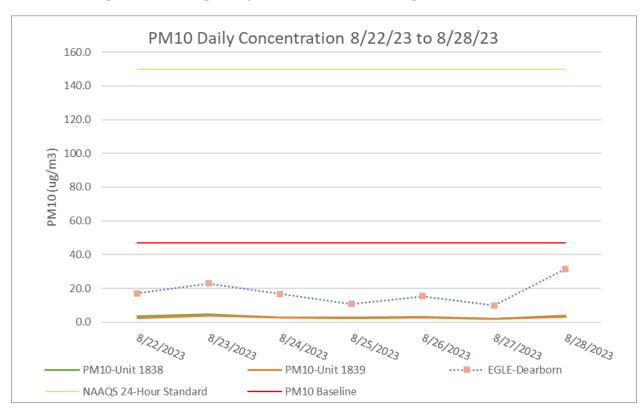

Pollutant Data Collected

Figure 3 – PM₁₀ Data

Monitoring at the Upwind site location (AQS-1 S/N 1838) commenced on 8/22/23. Monitoring at the Downwind site location (AQS-1 S/N 1839) also commenced on 8/22/23. Concurrent monitoring at both locations satisfied the (minimum) one-week Post-Construction monitoring period requirement.

The graph below represents the ambient PM10 measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 8/22/23 to 8/28/23. This graph is a plot of the PM₁₀ measurement data as averaged over each daily monitoring period. The daily averaging interval for PM₁₀ data is consistent with the associated EPA primary and secondary PM₁₀ NAAQS; a 24-hour (daily) averaged value of 150 micrograms per cubic meter ($\mu g/m^3$) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents the 24-hour PM_{10} NAAQS of 150 $\mu g/m^3$. The solid red line represents the baseline concentration established in the 1st Baseline Report. The PM_{10} monitor at the EGLE Dearborn Site is the closest state-operated PM_{10} monitor relative to the former Michigan State Fairgrounds property. Therefore, the graph below presents the 24-hour averaged data from the EGLE Dearborn continuous PM_{10} monitor for comparison to corresponding PM_{10} measurement data reported from the on-site monitors.

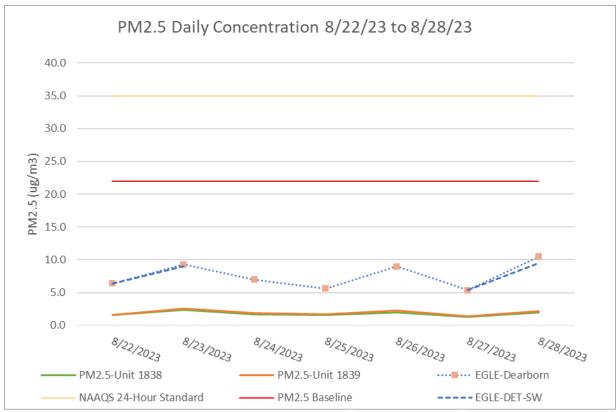


Figure 4 – PM_{2.5} Data

Monitoring at the Upwind site location (AQS-1 S/N 1838) commenced on 8/22/23. Monitoring at the Downwind site location (AQS-1 S/N 1839) also commenced on 8/22/23. Concurrent monitoring at both locations satisfied the (minimum) one-week Post-Construction monitoring period requirement.

The graph below represents the ambient $PM_{2.5}$ measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 8/22/23 to 8/28/23. This graph is a plot of the $PM_{2.5}$ measurement data as averaged over each daily monitoring period. The daily averaging interval for $PM_{2.5}$ data is consistent with the associated EPA primary and secondary $PM_{2.5}$ NAAQS: A 24-hour (daily) averaged value of 35 micrograms per cubic meter ($\mu g/m^3$) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents the 24-hour PM_{2.5} NAAQS of 35 μg/m³. The solid red line represents the baseline concentration established in the 1st Baseline Report. The EGLE Oak Park monitoring Site is the nearest state-operated PM_{2.5} monitor relative to the former Michigan State Fairgrounds property. The EGLE Oak Park PM_{2.5} monitor is a 24-hour, filter-based sampler that collects a sample at 3-day intervals. Filter-based PM samples require gravimetric analysis at a laboratory; EGLE estimates that analytical results for the Oak Park PM_{2.5} filters are delayed on average by approximately three months. Therefore, the graph below presents the 24-hour averaged data from the EGLE Dearborn and EGLE DET-SW continuous PM_{2.5} monitors for comparison to corresponding PM_{2.5} measurement data reported from the on-site monitors.

Note: The EGLE-DET-SW site had an extended power outage from 22:00 on 8/24/23 through 14:00 on 8/26/23.

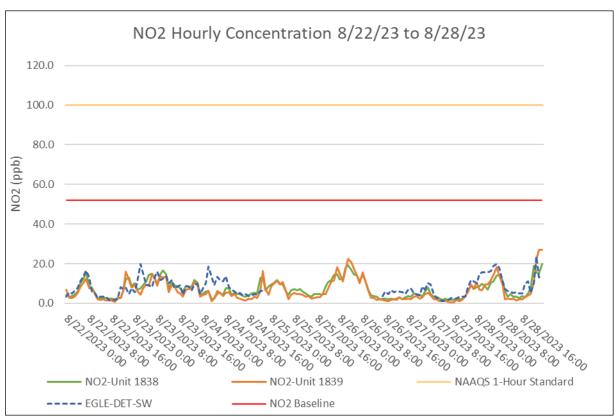


Figure 5 - NO₂ Data

Monitoring at the Upwind site location (AQS-1 S/N 1838) commenced on 8/22/23. Monitoring at the Downwind site location (AQS-1 S/N 1839) also commenced on 8/22/23. Concurrent monitoring at both locations satisfied the (minimum) one-week Post-Construction monitoring period requirement.

The graph below represents the ambient NO₂ measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 8/22/23 to 8/28/23. This graph is a plot of the NO₂ measurement data as averaged over a period of one (1) hour. This is consistent with the associated EPA primary NO₂ NAAQS: A 1-hour averaged value of 100 parts-per-billion (ppb) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents the 1-hour NO₂ NAAQS of 100 ppb. The solid red line represents the baseline concentration established in the 1st Baseline Report. The NO₂ monitor at the EGLE DET-SW site is the closest state-operated NO₂ monitor relative to the former Michigan State Fairgrounds property. The graph below presents the 1-hour averaged data from the EGLE DET-SW continuous NO₂ monitor for comparison to corresponding NO₂ measurement data reported from the on-site monitors.

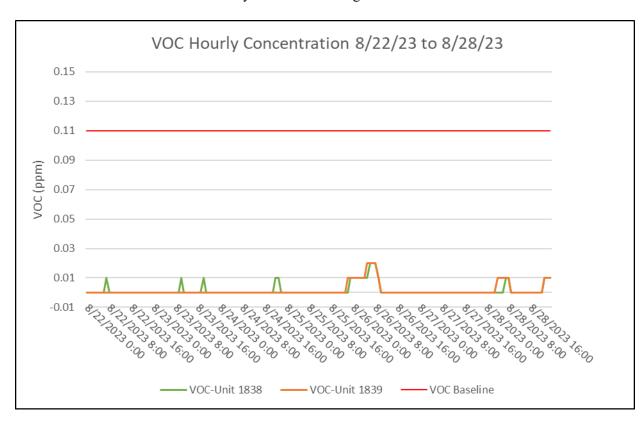

Note: The EGLE-DET-SW site had an extended power outage from 22:00 on 8/24/23 through 14:00 on 8/26/23.

Figure 6 – VOC Data

Monitoring at the Upwind site location (AQS-1 S/N 1838) commenced on 8/22/23. Monitoring at the Downwind site location (AQS-1 S/N 1839) also commenced on 8/22/23. Concurrent monitoring at both locations satisfied the (minimum) one-week Post-Construction monitoring period requirement.

The graph below presents the ambient VOC measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 8/22/23 to 8/28/23. This graph is a plot of the VOC measurement data as averaged over a period of one (1) hour. The solid red line represents the baseline concentration established in the 1st Baseline Report. The EPA has not established a NAAQS for VOC. VOC data are not available from nearby EGLE monitoring Sites.

Page 14

Data Quality Assurance/Quality Control

Quality Assurance/Quality Control

Quality assurance is a general term for the procedures used to ensure that a particular measurement meets the quality requirements for its intended use. Quality control of continuous analyzers consists of precision and span checks or flow verifications. Quality objectives were assessed via Site system audits.

All work performed by Montrose in support of this project follows the operating and quality control procedures contained in the <u>Post-Construction Ambient Air Test Plan for the Amazon Fulfillment Center at the Former Michigan State Fairgrounds</u> dated 1/31/23.

All quality control test data for the on-site monitors operated at the former Michigan State Fairgrounds property can be found in Appendix A to this report entitled "Quality Assurance Logs". Certificates of traceability for the calibration standards and equipment used in support of quality assurance checks are presented in Appendix B to this report entitled "Calibration Certification Sheets".

Signature Page

Prepared by:

Linda Quigley

Senior Reporting QC Specialist Montrose Air Quality Services LLC

Reviewed by:

David Cummings District Manager

Montrose Air Quality Services LLC

Same Commings

Appendix

A: Quality Assurance Logs

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network: City of Detroit Transit		Site:	MTMS Lab	Date:	8/18/23
Time Off-Line:	10:19	Time On-Line:	13:25	Technician:	Jeremy Levine

	Analyzer Model:	Aeroqual AQS-1	S/N:	1838	Last Cal:	7/26/23
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:	3/2/23
Equipment Info.	Zero Air Model No:	Teledyne API	S/N:	n/a	Cert Date:	n/a
	Gas Supplier:	AirGas	Cyl. Conc. (PPM):	49.33	Cyl. Pressure (PSIG)	2,080

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)	
OFFSET	0.00	0.00	
GAIN	1.345	1.389	

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator	Observed VOC						
Calibrator	brator Gas Channel Calibrator Air Channel		brator Air Channel Known VOC		Response from AQS-1		Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(∆%)	
OFF	OFF	5.0000	5.0149	0.00	0.00	0.00	-	
0.0500	0.0501	4.9493	4.9732	0.49	0.48	0.00	-2.0%	
0.0500	0.0502	2.4493	2.4687	0.98	0.92	0.00	-6.1%	

"AS LEFT" (ADJUSTED) TEST DATA

	Calibrator	Observed VOC					
Calibrator	Gas Channel	Calibrator A	Air Channel	Known VOC	Response from AQS-1		Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(∆%)
OFF	OFF	5.0000	5.0149	0.00	0.00	0.0	-
0.0500	0.0502	4.9493	4.9750	0.49	0.52	0.0	6.1%
0.0500	0.0502	2.4493	2.4703	0.98	0.99	0.0	1.0%

NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response $0.0 \text{ ppm} \pm 1 \text{ ppm}$.

Comments:	

Technician: Jeremy Levine

QA Review: Kenkeyster

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:			Unadjusted Cal.			Adjusted Cal.	Х	
Network:	Network: City of Detroit (Amazon)		Site:	MTMS I	₋ab	Date:	8/18/	23
Time Off	-Line:	13:25	Time On-Line:	16:46	6	Technician:	Jeremy l	_evine

	Analyzer Model:	Aeroqual AQS-1	S/N:	1838	Last Cal:	7/27/23
Calibration	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	3/2/23
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	1,380
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	-0.6	-0.6
GAIN	1.085	1.213

	Calibrator Flow and Test Gas Data					NO ₂ Response		
Calibrator Ga	Calibrator Gas Channel Calibrato		rator Air Channel		Observed from AQS-1		Δ% (Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0452	0.0453	3.4548	3.4788	397.8	396.7	0.4	-0.3%	
0.0484	0.0485	4.9516	4.9772	298.7	298.9	0.4	0.1%	
0.0323	0.0324	4.9477	4.9943	199.5	199.6	0.7	0.1%	
0.0161	0.0163	4.9839	5.0100	100.4	100.6	0.9	0.2%	
OFF	OFF	5.0000	5.0182	0.0	1.3	0.3	=	
	Linear Regression Analysis:							
Slope: 0.995168 Intercept:				1.102881	Corr. C	oefficient (r):	0.999	997

NOTES:

- 1. The NO2 sensor zero response should be 0.0 ppb \pm 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than \pm 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb \pm 0.2 ppb.
- 3. The NO2 sensor SPAN response should be $400 \text{ ppb} \pm 20 \text{ ppb}$ (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ± 20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb \pm 20 ppb.

Technician: Jeremy Levine

QA Review: Kenkeysters

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are: X	_Scheduled	Ur	nschedule	ed (If unsch	eduled, explain ı	reason why in	"Comme	nts" Section)
Network: City of D	etroit (Transit)	Site: Fa	airgrounds	S	Date of Checks	s:	8/18/202	3
Operator: Jeremy	Levine, Jeff Peitzscl	h	1		Time Off-Line:		n/a	EST
AEROQUAL QS-1 S/N:1838					Time On-Line:		n/a	EST
Reference Standards:								
Flow Standard: Aeroqua	l Rotometer	S/	/N#	n/a		Cert Date:	n/a	
	A as found" checks. cceptability limits				•			
AQS-1 Expected Flow Rate (A)	Flov	erence w Rate (B)			Profiler Flow Rate Error LPM (A-B)			Profiler Flow Rate Error Δ% (A-B) ÷ A x 100
1.0 LPM		1.00 LF	РМ		0.00			0.0%
Flow Check Procedure Link	Acceptability Lim		-		article Profiler and 1.05 LPM)		is	
LEAK CHECK DATA:		_						
PROFILER LEAKAC	SE RATE:			30	seconds	(Must be >10	sec for 1	0 kPa pressure change)
Leak Check Procedure Link AS LEFT CHECK DATA FLOW CHECK DATA:								
AQS-1 Expected Flow Rate (A)	Flov	erence w Rate (B)			Profiler Flow Rate Error LPM			Profiler Flow Rate Error Δ%
LPM		LF	РМ					
LEAK CHECK DATA:								
PROFILER LEAKAC	SE RATE:				seconds	(Must be > 1	0 sec for	10 kPa pressure change
Comments:								

Technician: Jeremy Levine

OA Review

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network: City of Detroit (Amazon)		Site: MTMS Lab		Date: 8/3		31/23	
Time Off-Lin	e: 12:00	Time On-Line:	13:44		Technician:	Jeremy Levine	
Analyzer Model:		Aerogual AQS-1	S/N:	1838		Last Cal:	8/18/23
Calibration	Calibrata Madal Na	1	S/11.	00		Cal Data	2/2/22

	Analyzer Model:	Aeroqual AQS-1	S/N:	1838	Last Cal:	8/18/23
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:	3/2/23
Equipment Info.	Zero Air Model No:	Teledyne API	S/N:	n/a	Cert Date:	n/a
	Gas Supplier:	AirGas	Cyl. Conc. (PPM):	49.33	Cyl. Pressure (PSIG)	2,080

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	
GAIN	1.389	

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator Flow and Test Gas Data							
Calibrator	Calibrator Gas Channel Calibrator Air Channel Known VOC		Calibrator Air Channel Kı			Response from AQS-1		
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Cama (DDM)		Response (PPM)	Std. Dev. (PPM)	(Δ%)	
OFF	OFF	5.0000	5.0164	0.00	0.00	0.00	-	
0.0500	0.0502	4.9493	4.9746	0.49	0.52	0.00	6.1%	
0.0500	0.0502	2.4493	2.4687	0.98	0.97	0.00	-1.0%	

"AS LEFT" (ADJUSTED) TEST DATA

	Calibrator Flow and Test Gas Data						
Calibrator Gas Channel Calibrator Air Ch			Air Channel Known VOC		Response from AQS-1		Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting Actual Flow Rate (SLPM) (SLPM)		Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
							-

NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response $0.0 \text{ ppm} \pm 1 \text{ ppm}$.

Comments:

Values good, no adjustment needed.		

Technician: Jeremy Levine

OA Review

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:				Unadjusted Cal.	Х		Adjusted Cal.	
Network: City of Detroit (Amazon) Site:		MTMS Lab		Date:	8/31/	/23		
Time Off-Line: 1		11:38	Time On-Line:	15:26	6	Technician:	Jeremy l	Levine

Calibration	Analyzer Model:	Aeroqual AQS-1	S/N:	1838	Last Cal:	8/18/23
	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	3/2/23
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	1,320
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	-0.6	
GAIN	1.213	

	Calibrato	or Flow and T	est Gas Data		NO₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed f	rom AQS-1	(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0452	0.0453	3.4548	3.4784	397.9	408.8	0.3	2.7%	
0.0484	0.0485	4.9516	4.9791	298.6	305.8	0.4	2.4%	
0.0323	0.0324	4.9677	4.9925	199.6	203.7	0.2	2.1%	
0.0161	0.0162	4.9839	5.0103	99.7	102.2	0.4	2.5%	
OFF	OFF	5.0000	5.0184	0.0	0.7	0.4	-	
			Linea	Regression Analy	ysis:			
Slope:	1.025	5226	Intercept:	0.055914	Corr. C	oefficient (r):	0.999	989

NOTES:

- 1. The NO2 sensor zero response should be 0.0 ppb ± 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than ± 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb \pm 0.2 ppb.
- 3. The NO2 sensor SPAN response should be 400 ppb ± 20 ppb (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ±20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb \pm 20 ppb.

Comments:

Values good, no adjustment needed.

Technician: Jeremy Levine QA Review: Kenkeysters

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are: X	Scheduled	Uns	scheduled (If un	scheduled, explain	reason why ir	ı "Comme	nts" Section)
Network: City of De	etroit (Transit)	Site: Fai	rgrounds	Date of Checks	s:	8/31/2023	3
Operator: Jeremy L	evine, Jeff Peitzscl	n		Time Off-Line:		n/a	EST
AEROQUAL QS-1 S/N:1838				Time On-Line:		n/a	EST
Reference Standards:							
Flow Standard: Aeroqual	Rotometer	S/N	\# n/a		Cert Date:	n/a	
				lve leak and compositions			below
AQS-1 Expected Flow Rate (A)	Flov	erence v Rate (B)		Profiler Flow Rate Error LPM (A-B)			Profiler Flow Rate Error Δ% (A-B) ÷ A x 100
1.0 LPM		1.00 LP	М	0.00	0.00 0.0%		0.0%
Flow Check Procedure Link A			-	Particle Profile M and 1.05 LPM		is	
LEAK CHECK DATA:							
PROFILER LEAKAG	E RATE:			30 seconds	(Must be >10	0 sec for 1	0 kPa pressure change)
AS LEFT CHECK DATA							
AQS-1 Expected Flow Rate (A)	Flov	erence v Rate (B)		Profiler Flow Rate Error LPM			Profiler Flow Rate Error Δ%
LPM		LP	М				
LEAK CHECK DATA:							
PROFILER LEAKAG	E RATE:			seconds	(Must be > 1	0 sec for	10 kPa pressure change
Comments:							

Technician: Jeremy Levine

QA Review: Kenkeyster

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network: Cit	y of Detroit (Amazon)	Site:	MTMS Lab	Date:	8/18/23
Time Off-Line:	Time Off-Line: 10:19		13:25	Technician:	Jeremy Levine
, 					

	Analyzer Model:	Aeroqual AQS-1	S/N:	1839	Last Cal:	7/26/23
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:	3/2/23
Equipment Info.	Zero Air Model No:	Teledyne API	S/N:	n/a	Cert Date:	n/a
	Gas Supplier:	AirGas	Cyl. Conc. (PPM):	49.33	Cyl. Pressure (PSIG)	2,080

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	0.00
GAIN	1.348	1.416

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator	Observed VOC					
Calibrator	Gas Channel	Calibrator A	Air Channel	Known VOC			Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response Std. Dev. (PPM) (PPM)		(∆%)
OFF	OFF	5.0000	5.0149	0.00	0.00	0.00	-
0.0500	0.0501	4.9493	4.9732	0.49	0.48	0.00	-2.0%
0.0500	0.0502	2.4493	2.4687	0.98	0.89	0.00	-9.2%

"AS LEFT" (ADJUSTED) TEST DATA

	Calibrator	Observed VOC					
Calibrator	Gas Channel	Calibrator A	Air Channel	Channel Known VOC Response from AQS-1		Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response Std. Dev. (PPM) (PPM)		(∆%)
OFF	OFF	5.0000	5.0149	0.00	0.00	0.0	-
0.0500	0.0502	4.9493	4.9750	0.49	0.51	0.0	4.1%
0.0500	0.0502	2.4493	2.4703	0.98	0.95	0.0	-3.1%

NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm \pm 1 ppm.

Comments:	

Technician: Jeremy Levine

QA Review:

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibra	Unadjusted Cal.			Adjusted Cal.	Х		
Network: City of Detroit (Amazon) Site:		MTMS La	ab	Date:	8/18	/23	
Time Off-Line: 13:25		Time On-Line:	16:46		Technician:	Jeremy	Levine

	Analyzer Model:	Aeroqual AQS-1	S/N:	1839	Last Cal:	7/27/23
Calibration	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	3/2/23
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	1,380
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)		
OFFSET	0.0	0.0		
GAIN	1.055	1.144		

	Calibrato	or Flow and T	est Gas Data		NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed from AQS-1		(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0452	0.0453	3.4548	3.4788	397.8	398.3	0.7	0.1%	
0.0484	0.0485	4.9516	4.9772	298.7	299.4	0.4	0.2%	
0.0323	0.0324	4.9477	4.9943	199.5	199.6	0.5	0.1%	
0.0161	0.0163	4.9839	5.0100	100.4	99.6	0.2	-0.8%	
OFF	OFF	5.0000	5.0182	0.0	-0.3	0.2	-	
			Linear	Regression Analy	/sis:			
Slope:	1.003	3116	Intercept:	-0.580860	Corr. C	oefficient (r):	0.999	997

NOTES:

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are: X	Scheduled	Unsch	eduled (If unsc	heduled, explain	reason why ir	ı "Commei	nts" Section)
Network: City of De	etroit (Transit)	Site: Fairgro	ounds	Date of Checks	s:	8/18/2023	3
Operator: Jeremy L	evine, Jeff Peitzscl	า		Time Off-Line:		n/a	EST
AEROQUAL QS-1 S/N:1839				Time On-Line:		n/a	EST
Reference Standards:							
Flow Standard: Aeroqual	Rotometer	S/N#	n/a		Cert Date:	n/a	
	s found" checks. cceptability limits	• •					pelow
Flow Rate Flow		erence v Rate (B)		Profiler Flow Rate Error LPM (A-B)		Prof Flow Error (A-B) ÷ A	
1.0 LPM	1.0 LPM		0.00 DPM			0.0%	
Flow Check Procedure Link A	cceptability Lim	-		Particle Profiler and 1.05 LPM)		is	
LEAK CHECK DATA:							
PROFILER LEAKAG	E RATE:		30) seconds	(Must be >10	0 sec for 1	0 kPa pressure change)
Leak Check Procedure Link AS LEFT CHECK DATA FLOW CHECK DATA:							
AQS-1 Expected Flow Rate (A)	Flov	erence v Rate (B)		Profiler Flow Rate Error LPM			Profiler Flow Rate Error Δ%
LPM		LPM					
LEAK CHECK DATA:							
PROFILER LEAKAG	E RATE:			seconds	(Must be > 1	0 sec for	I0 kPa pressure change
Comments:							

Technician: Jeremy Levine

QA Review: Kenkeyster

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit (Amazon)	Site:	MTMS	Lab	Date:	8/31/23	
Time Off-Lir	ne: 12:00	Time On-Line:	13:4	4	Technician:	Technician: Jeremy Levine	
		1,00,4	2.6	4000			0/40/00
	Analyzer Model:	Aeroqual AQS-1	Aeroqual AQS-1 S/N: 1839			Last Cal:	8/18/23
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:		3/2/23
Equipment Info.	Zero Air Model No:	Teledyne API	S/N:	n/a		Cert Date:	n/a

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	
GAIN	1.416	

Cyl. Conc. (PPM):

49.33

Cyl. Pressure (PSIG)

2,080

"AS FOUND" (UNADJUSTED) TEST DATA

Gas Supplier:

AirGas

	Calibrator Flow and Test Gas Data							
Calibrator (Gas Channel	Calibrator A	Air Channel	Known VOC	VOC		Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)	
OFF	OFF	5.0000	5.0164	0.00	0.00	0.00	-	
0.0500	0.0502	4.9493	4.9746	0.49	0.50	0.00	2.0%	
0.0500	0.0502	2.4493	2.4686	0.98	0.92	0.00	-6.1%	

"AS LEFT" (ADJUSTED) TEST DATA

	Calibrator Flow and Test Gas Data						
Calibrator	Calibrator Gas Channel Calibrator Air Channel		Known VOC	nown VOC Response from AQS-1		Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
							-

NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm ± 1 ppm.

Comments:

values good, no adjustment needed.		

Technician: Jeremy Levine

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:				Unadjusted Cal.	Х		Adjusted Cal.	
Network:	City of Detro	oit (Amazon)	Site:	MTMS I	₋ab	Date:	Date: 8/31/23	
Time Off-Line: 11:38		11:38	Time On-Line:	15:26		Technician:	Jeremy	_evine

Calibration Equipment Info.	Analyzer Model:	Aeroqual AQS-1	S/N:	1839	Last Cal:	8/18/23
	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	3/2/23
	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	1,320
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.0	
GAIN	1.144	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Re	sponse	Δ%	
Calibrator Ga	librator Gas Channel Calibrator Air Channel		Air Channel		Observed from AQS-1		(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0452	0.0453	3.4548	3.4784	397.9	419.6	0.6	5.5%	
0.0484	0.0485	4.9516	4.9791	298.6	318.1	0.6	6.5%	
0.0323	0.0324	4.9677	4.9925	199.6	209.7	0.6	5.1%	
0.0161	0.0162	4.9839	5.0130	99.7	104.9	0.3	5.2%	
OFF	OFF	5.0000	5.0184	0.0	0.6	0.2	-	
	Linear Regression Analysis:							
Slope:	1.056	6795	Intercept:	0.108665	Corr. C	oefficient (r):	0.999	958

NOTES:

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are: X	Scheduled	Uns	scheduled (If unsc	heduled, explain ı	reason why ir	n "Commer	nts" Section)
Network: City of De	etroit (Transit)	Site: Fair	grounds	Date of Checks	s:	8/31/2023	3
Operator: Jeremy L	evine, Jeff Peitzsch	n		Time Off-Line:		n/a	EST
AEROQUAL QS-1 S/N:1839				Time On-Line:		n/a	EST
Reference Standards:							
Flow Standard: Aeroqual	Rotometer	S/N		Cert Date:	n/a		
	s found" checks. ceptability limits			•			pelow
AQS-1 Expected Flow Rate (A)	Flow Rate Flow Rate			Profiler Flow Rate Error LPM (A-B)		(Profiler Flow Rate Error Δ% A-B) ÷ A x 100
1.0 LPM		1.00 LPI	1.00 LPM 0.00			0.0%	
Flow Check Procedure Link A	cceptability Lim 1.0 LPM ± 0.0		pected AQS-1 F ween 0.95 LPM			is	
LEAK CHECK DATA:							
PROFILER LEAKAG	E RATE:		30	seconds	(Must be >10	0 sec for 1	0 kPa pressure change)
AS LEFT CHECK DATA							
AQS-1 Expected Flow Rate (A)	Flov	Reference Flow Rate (B)		Profiler Flow Rate Error LPM			Profiler Flow Rate Error Δ%
LPM		LPI	М				
LEAK CHECK DATA:							
PROFILER LEAKAGE RATE: seconds (Must be > 10 sec for 10 kPa pressure change							0 kPa pressure change
Comments:							

Technician: Jeremy Levine

QA Review: Kenkeyster

B: Calibration Certification Sheets

Airgas Specialty Gases Airgas USA, LLC 24075 US Hwy 6 Stryker, OH 43557 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Part Number: Cylinder Number: X02NI99C15A0104

EB0112566

Balance

124 - Stryker (SAP) - OH

Laboratory: Analysis Date:

141-402072346-1

Lot Number:

NITROGEN

Mar 31, 2021

Reference Number:

Cylinder Volume: 144.4 CF Cylinder Pressure:

Valve Outlet:

141-402072346-1

2015 PSIG

350

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

ANALYTICAL RESULTS Component Req Conc **Actual Concentration Analytical** (Mole %) Uncertainty ISOBUTYLENE 50.00 PPM 49.33 PPM +/- 2%

Approved for Release

CERTIFICATE OF ANALYSIS

Grade of Product: TRACEABILITY STANDARD

Part Number: Cylinder Number: X02NI99T33W0004

D068357

Laboratory:

124 - Chicago (SAP) - IL

Reference Number: 54-402006473-1

Cylinder Volume:

32.0 CF Cylinder Pressure: 2218 PSIG

Valve Outlet:

660

Certification Date:

Jan 26, 2021

Expiration Date: Jan 26, 2024

This cylinder has been analytically certified as directly traceable to NIST with a total analytical uncertainty as stated below with a confidence level of 95%, in accordance with Airgas ISO procedures. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder Below 100 psig

ANALYTICAL RESULTS									
Compo	nent	Requesto Concent		Actual Concentration	Total Relat Uncertaint				
NITROG NITROG	EN DIOXIDE EN	30.00 PPM Balance		30.95 PPM	+/- 1% NIST	Traceable			
Туре	Lot ID	Cylinder No	CALIBRATIO Concentration	N STANDARDS	Uncertainty	Expiration Date			
GMIS	401438584104	EB0120492	48.18 PPM NITRO	GEN DIOXIDE/NITROGEN	+/- 1.8%	Nov 01, 2022			
ANALYTICAL EQUIPMENT									
Instrum	nent/Make/Model		Analytical Principl	e Last	Multipoint Calibr	ation			
MKS FTI	R NO2 017707558		FTIR	Jan 0	7, 2021				

Triad Data Available Upon Request

PERMANENT NOTES: OXYGEN ADDED TO MAINTAIN STABILITY

Approved for Release

Using Bios Dry-Cal Flow Standard(s) PPLICATION INFORMATION:

Calibrator Model/S/N:	TAPI T700; SN 69		NETWORK:	Marathon	Detroit PAMS	SITE:	MTMS
Calibration Site:	MTMS Site		Test Date:	3/2/2023			
Barometric Pressure (Pa, ir	n mmHg): 74	3.0	Calibrated by:	Jeremy Levin	е		
Flow Standard Model:	Mesa Labs Defend	der 530+ M, 530+ H	Air Temp. (Ta,	in deg. C):	23.1	(=deg. K):	296.3
Flow Standard Base S/N:	Not Applicable		Flow Cell Mode	l No:	Defender 530+ N	Defender 530+ H	
Certification Date:	Not Applicable		Flow Cell S/N:		205428	205361	
			Flow Cell Certif	ication Date:	7/22/2022	7/21/2022	

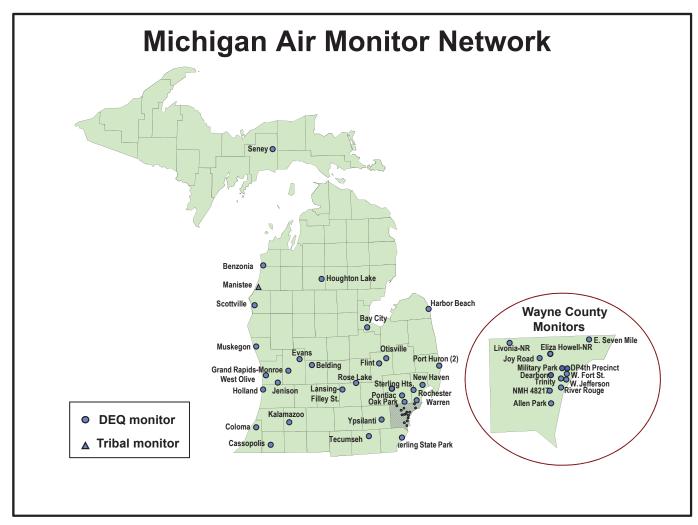
Air Channel Gas Channel Check One: X

(X) MFC Drive	Flow Meter Readings (5 sets of 10 averaged flows)						STD DEV	Flow Rate From Previous	Δ% ("New Cal Flow"
Voltage (mVDC)	F ₁ (SLPM)	F ₂ (SLPM)	F ₃ (SLPM)	F ₄ (SLPM)	F ₅ (SLPM)	Flow (F1F5) (SLPM)	F1F5 (in <u>sccm</u>)	<u>Cal</u> (SLPM)	Vs "Prev. Cal Flow")
5000	10.8520	10.8580	10.8420	10.8600	10.8530	10.853	7.0	10.832	-0.2%
4750	10.3170	10.3160	10.3150	10.3110	10.3160	10.315	2.3	10.266	-0.5%
4500	9.6906	9.6895	9.6869	9.6877	9.6923	9.689	2.2	9.708	0.2%
4250	9.1475	9.1495	9.1520	9.1448	9.1438	9.148	3.4	9.157	0.1%
4000	8.5987	8.6045	8.6008	8.6002	8.5984	8.601	2.4	8.603	0.0%
3750	8.0527	8.0573	8.0563	8.0529	8.0549	8.055	2.0	8.053	0.0%
3500	7.5167	7.5172	7.5134	7.5132	7.5105	7.514	2.8	7.507	-0.1%
3250	6.9823	6.9845	6.9790	6.9783	6.9767	6.980	3.2	6.967	-0.2%
3000	6.4503	6.4485	6.4492	6.4473	6.4441	6.448	2.4	6.430	-0.3%
2750	5.9049	5.8928	5.8966	5.9052	5.9054	5.901	5.9	5.879	-0.4%
2500	5.3137	5.3172	5.3185	5.3195	5.3172	5.317	2.2	5.334	0.3%
2250	4.7718	4.7757	4.7813	4.7790	4.7793	4.777	3.7	4.801	0.5%
2000	4.2360	4.2314	4.2315	4.2332	4.2360	4.234	2.3	4.265	0.7%
1750	3.6825	3.6817	3.6854	3.6793	3.6879	3.683	3.3	3.724	1.1%
1500	3.1393	3.1393	3.1519	3.1439	3.1461	3.144	5.3	3.189	1.4%
1250	2.6238	2.6284	2.6290	2.6273	2.6287	2.627	2.1	2.650	0.9%
1000	2.0926	2.0917	2.0912	2.0918	2.0917	2.092	0.5	2.115	1.1%
750	1.5499	1.5498	1.5498	1.5505	1.5516	1.550	0.8	1.579	1.8%
500	1.0163	1.0157	1.0146	1.0148	1.0145	1.015	0.8	1.037	2.1%
250	0.48024	0.48137	0.48059	0.48179	0.48179	0.481	0.7	0.493	2.4%
SLOPE:	0.002180501	-	INTERCEPT:	-0.102560589	CORRELAT	ON COEFF (r):	-	0.999962608	-

Comments:			
echnician:	Jeremy Levine	3/2/2023	
	(signature)	Date	,

TAPI T700 MFC Calibration Using Bios Dry-Cal Flow Standard(s)

CALIBRATOR APPLI	CATION INFORMATION:				
Calibrator Model/S/N:	TAPI T700; SN 69	NETWORK:	Marathon Detroit PAMS	SITE:	MTMS
Calibration Site:	MTMS Site	Test Date:	3/1/2023		
Barometric Pressure (Pa, in mmHg):	740.0	Calibrated by:		J Levine	
Flow Standard Model:	Mesa Labs Defender 530+ L	Air Temp. (Ta, in o	deg. C): 22.9	(=deg. K):	296.1
Flow Standard Base S/N:	Not Applicable	Flow Cell Model N	lo:	530+ Low Flo	W
Base Certification Date:	Not Applicable	Flow Cell S/N:		205663	
		Flow Cell Certifica	tion Date:	8/4/2022	


Check One: Air Channel X Gas Channel

(X)			0.0538			Average	STD DEV	Flow Rate	Δ%
MFC Drive		(5 sets	s of 10 averaged	flows)		Flow	F1F5	From Previous	("New Cal Flow"
Voltage	F_1	F_2	F_3	F_4	F_5	(F1F5)		<u>Cal</u>	Vs
(mVDC)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(in <u>sccm</u>)	(SLPM)	"Prev. Cal Flow")
5000	0.05511	0.05513	0.05514	0.05507	0.05504	0.0551	0.04	0.0549	-0.3%
4750	0.05239	0.05240	0.05240	0.05241	0.05240	0.0524	0.01	0.0523	-0.2%
4500	0.04958	0.04960	0.04961	0.04963	0.04964	0.0496	0.02	0.0496	-0.1%
4250	0.04669	0.04674	0.04676	0.04680	0.04683	0.0468	0.05	0.0468	0.1%
4000	0.04415	0.04416	0.04412	0.04406	0.04405	0.0441	0.05	0.0441	0.1%
3750	0.04147	0.04148	0.04146	0.04150	0.04145	0.0415	0.02	0.0414	-0.2%
3500	0.03870	0.03873	0.03874	0.03873	0.03875	0.0387	0.02	0.0387	-0.2%
3250	0.03587	0.03589	0.03591	0.03593	0.03597	0.0359	0.04	0.0359	-0.1%
3000	0.03329	0.03327	0.03324	0.03320	0.03318	0.0332	0.05	0.0331	-0.5%
2750	0.03054	0.03055	0.03056	0.03057	0.03056	0.0306	0.01	0.0304	-0.5%
2500	0.02775	0.02777	0.02778	0.02779	0.02781	0.0278	0.02	0.0277	-0.5%
2250	0.02502	0.02498	0.02500	0.02498	0.02499	0.0250	0.02	0.0249	-0.3%
2000	0.02231	0.02232	0.02232	0.02232	0.02230	0.0223	0.01	0.0222	-0.7%
1750	0.01950	0.01951	0.01952	0.01952	0.01953	0.0195	0.01	0.0193	-0.9%
1500	0.01668	0.01667	0.01667	0.01668	0.01669	0.0167	0.01	0.0166	-0.6%
1250	0.01392	0.01393	0.01394	0.01394	0.01392	0.0139	0.01	0.0138	-0.9%
1000	0.01110	0.01106	0.01107	0.01110	0.01111	0.0111	0.02	0.0110	-1.0%
750	0.00831	0.00831	0.00832	0.00832	0.00831	0.0083	0.01	0.0082	-1.3%
500	0.00548	0.00545	0.00547	0.00546	0.00546	0.0055	0.01	0.0054	-1.9%
250	0.00261	0.00264	0.00262	0.00262	0.00262	0.0026	0.01	0.0025	-6.0%
SLOPE:	0.000011		INTERCEPT:	0.000167747		CORRELATION	COEFF (r):	0.999979775	

Comments:				
	Technician:	Jeremy Levine		3/1/23
	•		(signature)	Date

C: State Monitor Map

