

TRANSMITTAL LETTER

DATE: January 24, 2024

TO: City of Detroit Environmental Affairs Buildings, Safety Engineering and Environmental Department 2 Woodward Avenue Detroit, Michigan 48226 Phone: 313.471-5110 Attn: Mr. Hossam N. Hassanien, PG, CPG Email: hassanienh@detroitmi.gov

RE:	Former State Fair Grounds Ambient Monitoring Second Construction Phase Report
PROJECT #	2142-7261-00

WE ARE TRANSMITTING HEREWITH THE FOLLOWING MATERIAL

Date	Copies	Description
01/24/2024	1	Former State Fair Grounds Ambient Monitoring Second Construction Phase
		Report

REMARKS

Please find attached a copy of the Ralph C. Wilson Geotechnical Monitoring Report for your use. If you have any questions, you may contact Mr. Dor'Mario Brown at 248.727.7083. Thank you.

DLZ REPRESENTATIVE

Dor'Mario Brown Division Manager

4041 Martel St, Melvindale, MI 48122 OFFICE 313.383.3216 ONLINE WWW.DLZ.COM

January 24, 2024

Ms. Donna Rice City of Detroit Detroit Building Authority 500 Griswold, Suite 200 Detroit, Michigan 48226

RE: Ambient Air Quality Monitoring – 2nd Construction Phase Ambient Monitoring Report Proposed Department of Transportation (DDOT) Transit Center Detroit, Michigan Project No. 2142726100

Dear Ms. Rice:

The City of Detroit Department of Transportation (DDOT) recently completed a property transaction for a new Transit Center to be constructed on Parcel D of the former Michigan State Fairgrounds located at 8 Mile Road and Woodward Avenue in Detroit, Michigan. The City contracted DLZ Michigan, Inc. to conduct ambient air quality monitoring at the proposed Detroit Department of Transportation (DDOT) Transit Center site (Site).

The monitoring program consists of siting localized monitors at an upwind and downwind locations to measure concentrations of particulate matter (PM_{10} and $PM_{2.5}$), nitrogen oxide (NOx, as NO₂), and volatile organic compounds (VOCs), and evaluate air quality from the Site during three (3) distinct phases:

- Pre-development baseline period
- Construction phase
- Post-construction facility operation

Pre-Development Baseline Period (Completed) 1st Construction Phase Monitoring (Completed) 2nd Construction Phase Monitoring (Completed)

DLZ's 2nd Construction Phase Monitoring report, dated November20, 2023, presented ambient concentrations during the construction activities at the Site. 2nd Construction phase period included monitoring data collected by Montrose Air Quality Services, LLC (MAQS), from September 15 through September23 ,2023, and was supplemented with monitoring data collected by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) from September15, 2023, through September 23, 2023. The purpose of the Construction Monitoring Report was to compare the data collected at the Site during the construction activities to corresponding NAAQS and baseline reference concentrations. if measured pollutant concentrations exceeded, the construction contractor would be alerted to investigate on-site construction

607 Shelby St., Ste. 650, Detroit, Michigan 48226 OFFICE 313.961.4040 ONLINE WWW.DLZ.COM

activities at the time that the elevated concentration was recorded and determine if additional mitigation measures were needed to reduce pollutant concentrations to below the baseline reference concentration.

2nd Phase Construction Monitoring

The enclosed report presents the results of the 2nd Construction Phase Monitoring event that was conducted for the two (2)-weeks period of September 15, 2023, through September 23, 2023. The goal of Construction Phase Ambient monitoring is to collect concentration data of target air pollutants during the on-site activities consisting of concrete work, steel construction, roofing, interior buildout, electrical work, and plumbing to assess whether additional mitigation efforts are warranted to reduce pollutant concentrations to below baseline levels or NAAQS.

The enclosed 1st Phase Construction Ambient Monitoring Report describes the monitoring program, objectives, Site overview, monitor locations and equipment, monitoring results, and an overview of data quality assurance.

The report includes monitoring data from two (2) available sources, including:

- Two (2) Site monitors operated by MAQS for DLZ during the monitoring period (September 15, 2023 through September 23, 2023) and identified as Unit 1838 (upwind location) and Unit 1839 (downwind location).
- Nearby off-site monitors operated by Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the MAQS monitoring period.

As part of this air monitoring program, MAQS collected two (2) weeks of air monitoring data for NOx (as NO₂), PM₁₀ and PM_{2.5}, and VOCs at two (2) monitors, along with prevailing wind directions and speeds (vectors).

The City anticipates that development of the proposed DDOT Transit Center may result in direct and fugitive air emissions from construction activities, as well as future operations. Sources of NOx and VOC emissions related to construction may include vehicular traffic and diesel engines (over-the-road and non-road heavy duty construction). Potential emissions of PM₁₀ and PM_{2.5} related to construction may include fugitive dust associated with vehicular traffic, soil handling, material storage piles, concrete batching, and abrasives blasting.

The monitors, designated as Unit 1838 and Unit 1839, were located on opposite sides of the Site and both stations are configured to collect pollutant and meteorological data. The upwind monitor (Unit 1838) measures pollutant concentrations that have not blown across the Site and should be free from potential impacts of on-site development activity and is representative of local area background concentrations.

Results of 2nd Phase Construction Monitoring

As presented below and in the enclosed report, for monitoring conducted September 15 through September 23, 2023, concentrations of PM_{10} , $PM_{2.5}$, NO_x (as NO_2) and VOC from the on-site monitors are establishing their baseline concentrations, as summarized in Table 2. NO_x (as NO_2) concentrations are less than the 1-hour NAAQS of 100 ppb for NO_2 .¹ Monitored concentrations of PM_{10} , $PM_{2.5}$ are also less than the 24-hour NAAQS of 150 μ g/m³ for PM_{10} , 35 μ g/m³ for $PM_{2.5}$.

Pollutant	2nd phase Maximum Concentration	2nd Phase Max Monitor	Date of Maximum Concentration	Baseline Max Concentrati on	Baseline Max Monitor	NAAQS	Units
PM10	35.7	Unit 1839	9-20-2023	17	Unit 1839	150	µg/m3
PM _{2.5}	9.2	Unit 1839	9-20-2023	4	Unit 1839	35	µg/m3
NO ₂	36	Unit 1838	9-22-2023	22	Unit 1838	100	ppb
VOC	0.06	Unit 1838	9-16-2023	0.03	Unit 1839	NA ²	ppm

Table 2 – Summary of Air Monitoring from September 15 through September 23, 2023

¹ Construction Phase Monitoring report included two (2) Site monitors operated by MAQS for DLZ from July 15, 2023, through July 24, 2023, and identified as Unit 1838 (upwind location) and Unit 1839 (downwind location), as well as monitoring data provided by Michigan Department of Environment, Great Lakes, and Energy (EGLE).

² NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NOx and VOCs in certain ambient conditions (typically hot, sunny weather)

In summary, the data collected from the site during the first construction-phase do not exceed any NAAQS. However, during this monitoring period, there were periods where ambient concentrations of PM10, PM2.5, NO2 and VOC shows elevated as compared to the baseline concentration, this is possibly due to the construction activities at the DDOT transit center site. To conclude the data collected are not indicative of a threat to public health.

We appreciate this opportunity to be of service to you. If you have questions or need additional information, please contact us at 248-727-7083.

Sincerely, DLZ Michigan, Inc.

Dor'Mario Brown Division Manager DB/GS

2ND CONSTRUCTION PHASE AMBIENT MONITORING REPORT DDOT TRANSIT CENTER AT FORMER MICHIGAN STATE FAIRGROUNDS DETROIT, MICHIGAN

Prepared For: **DLZ Michigan, Inc.** 607 Shelby St. Suite 650 Detroit, MI 48226

Prepared By: Montrose Air Quality Services, LLC

45 U.S. 46, Suite 601 Pine Brook, NJ 07058 4949 Fernlee Avenue Royal Oak, MI 48073

Document Number: Monitoring Period: Submittal Date: 027AA-016697-RT-84 September 15 through September 23, 2023 November , 2023

Table of Contents	
PROJECT OVERVIEW	2
Background	2
Objectives	2
Potential Sources	2
Site Overview	3
Figure 1 – Monitor Locations at the DDOT Transit Center Construction Site	
Monitoring Equipment	5
Discussion of Results	6
POLLUTANT DATA COLLECTED	7
Figure $2 - PM_{10}$ Data	7
<i>Figure 3 – PM</i> _{2.5} <i>Data</i>	8
Figure $4 - NO_2$ Data	9
Figure 5 – VOC Data	10
METEOROLOGICAL DATA COLLECTED	11
Figure 6 – Wind Rose From 1838 Monitor	11
Figure 7 – Wind Rose From 1839 Monitor	12
DATA QUALITY ASSURANCE/QUALITY CONTROL	13
Quality Assurance/Quality Control	13
CONCLUSION	14
SIGNATURE PAGE	15
APPENDICES	16
Appendix A: Quality Assurance Logs	
Appendix B: Calibration Certification Sheets	
Appendix C: Locations of MI EGLE Monitors Relative to the Former State Fairground	ls 18

Project Overview

Background

DLZ Michigan, Inc. (DLZ) has retained Montrose Air Quality Services, LLC (Montrose) to conduct an ambient air monitoring program in support of the proposed Detroit Department of Transportation (DDOT) Transit Center on Parcel D of the former Michigan State Fairgrounds located at 8 Mile Road and Woodward Avenue in Detroit, Michigan. The program is conducted to monitor for a mixture of pollutants that may originate from construction activities as well as future Site operations including vehicular traffic, surface attrition, and dust emissions.

The previously-submitted Baseline Monitoring Report presented ambient monitoring data collected by Montrose prior to commencement of significant Site construction activities. The baseline monitoring period began July 8 and continued through July 22, 2022. The purpose of the Baseline Monitoring report is to characterize background ambient concentrations at the Site for each monitored pollutant. The pollutant concentrations recorded during the Baseline monitoring period were quite low. Consequently, Montrose selected the highest hourly concentration recorded for NO₂ and VOC during the baseline monitoring period to determine reference baseline values for NO₂ and VOC. Similarly, Montrose selected the highest 24-hour averaged concentration recorded for PM_{2.5} and PM₁₀ during the baseline monitoring period to determine reference baseline values for PM_{2.5} and PM₁₀. It should be noted that the resulting baseline reference concentrations are far below National Ambient Air Quality Standards (NAAQS) established for NO₂, PM_{2.5} and PM₁₀.

Data collected at the Site during subsequent construction and post-construction monitoring periods are compared to corresponding NAAQS and baseline reference concentrations. For construction-phase monitoring periods, if measured pollutant concentrations exceeded the NAAQS concentration and corresponding meteorological (i.e., wind) data indicated the elevated concentration might have resulted from on-site activity (as opposed to transport from off-site sources), the construction contractor would be alerted to investigate on-site construction activities at the time that the elevated concentrations was recorded and determine if additional mitigation measures were needed to reduce pollutant concentrations to below the baseline reference concentration.

This report also includes data reported from air pollutant monitors operated by Montrose and Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the monitoring period commencing on July 15 and concluding on July 24, 2023.

Objectives

The specific objectives are to continuously measure ambient concentrations of the following pollutant and meteorological parameters at two (2) locations proximate to the Site:

- Suspended particulate matter having an aerodynamic diameter ≤ 10 microns (PM₁₀)
- Suspended particulate matter having an aerodynamic diameter ≤ 2.5 microns (PM_{2.5})
- Nitrogen Dioxide (NO₂)
- Volatile Organic Compounds (VOC)
- Meteorological parameters measured at each monitoring location: wind speed, wind direction, temperature, relative humidity, and barometric pressure

Potential Sources

Sources of NO_x and VOC emissions related to construction include vehicular traffic and diesel engines (over-the-road and non-road heavy duty construction). Potential emissions of PM_{10} and $PM_{2.5}$ related to construction may include fugitive dust associated with vehicular traffic, soil handling, material storage piles, concrete batching, and abrasives blasting.

Operational Staff and Contacts

Facility Information

Monitoring Proposed DDOT Transit Center Location: former Michigan State Fairgrounds 1120 W. State Fair Avenue Detroit, MI 48203

Monitoring Program Coordinator

DLZ Michigan, Inc. 607 Shelby St., Suite 650 Detroit, MI 48226

Mr. Dor'Mario Brown
Division Manager
DLZ Michigan, Inc.
313-383-3216
<u>lbrown@dlz.com</u>

Monitoring Team Contact Information

Testing Firm: Montrose Air Quality Services, LLC (Montrose)

David Cummings	Darrin Barton
District Manager	Sr. Project Manager
201-213-2913	512-656-6455
dcummings@montrose-env.com	dabarton@montrose-env.com
	David Cummings District Manager 201-213-2913 dcummings@montrose-env.com

Kevin Ruggiero Sr. Project Manager 973-417-6487 kruggiero@montrose-env.com Jeffrey Peitzsch Shop Coordinator 313-213-4816 jbpeitzsch@montrose-env.com

Linda Quigley Senior Reporting QC Specialist 973-202-3312 lquigley@montrose-env.com

Site Overview

The air quality monitoring is performed at the site of the proposed DDOT Transit Center (former Michigan State Fairgrounds) property located at 1120 W State Fair Avenue in Detroit, MI. The existing site contains historically significant buildings: the 1924 Coliseum, the 1926 Dairy Cattle Building and the adjacent Agricultural Building. These structures may be retained or reused for the Transit Center. Other structures onsite in this area will be demolished and re-used to build a new DDOT Transit Center. Figure 1 presents an aerial view of the Site showing the DDOT Transit Center construction site and locations of the upwind (#1838) and downwind (#1839) air quality monitors.

Page 4

Figure 1 – Monitor Locations at the DDOT Transit Center Construction Site

Monitoring Equipment

Air monitoring at the proposed DDOT Transit Center (former Michigan State Fairgrounds) is performed using an AQS-1 Urban Air Quality Monitor manufactured by Aeroqual. The compact size of the AQS-1 monitor makes it viable for a changing construction site where the monitor equipment may need to be removed and re-deployed during monitoring campaigns. Air monitoring is conducted for the parameters listed in Table 1.

Air Pollutant/Parameter Category	Principle of Operation
PM ₁₀ and PM _{2.5}	Laser Scattering interferometry with particle counting
NO_2	Electrochemical
VOC	Photoionization
Wind Speed, Wind Direction, Temperature, Relative Humidity, Barometric Pressure	Sonic Anemometer and Various

Table 1 - Pollutants Monitored

The AQS-1 integrates all measurement detectors, sample pump, flow controllers, signal processing, data acquisition and data transmission components within a compact, weatherproof enclosure. The AQS-1 features separate, dedicated sample air inlets configured specifically for the measurement of suspended particulate matter (i.e., PM_{10} and $PM_{2.5}$) and gaseous pollutants (i.e., NO_2 and VOC). An internal sample pump and flow controllers regulate and maintain stable, optimal flow rates of ambient air though each sample inlet. The sample air streams are directed to the various detection and measurement modules housed within the instrument. Each AQS monitor is powered in the field by deep-cycle batteries charged via solar photovoltaic panels and a battery charging regulator.

Particulate matter is continuously measured via laser scattering interferometry and particle counting methodology. This method is based on the physical principle of light scattering. Each single particle in the detection and measurement module is illuminated by a defined laser light beam; the coherent laser light is scattered by reflection off particles in the sample air stream within the detector. The scattering signal is detected at an angle of 90° by a photo diode within the detector module. In accordance with the Mie theory, each measured pulse height of the scattered light is directly proportional to the particle size. The pulses are classified in an electronic register of 32 different size channels.

 NO_2 is continuously measured using an electrochemical sensor consisting of a working counter and reference electrode. NO_2 concentrations are detected and measured by oxidation or reduction reactions on an electrochemical sensor housed within a module containing a liquid electrolyte specific to NO_2 . The electrochemical sensor is subjected to a controlled, external electrical circuit. When NO_2 is present, a current proportional to the NO_2 concentration is produced.

VOC is continuously measured using a photoionization detector (PID). The PID sensor lamp produces photons having enough energy to ionize VOC molecules. The PID will only respond to molecules that have an ionization energy at or below the energy of the lamp; the PID used in the AQS-1 project employs a 10.6 electron-volt lamp. The ions produced from VOC compounds generate an electrical current that is measured as the output of the detector.

The meteorological monitors integrated with the AQS-1 are the Vaisala Model WXT536 Weather Transmitter. The meteorological monitors are mounted on a rigid support post elevated above the monitor enclosure cabinet, and are integrated with the data acquisition and data telemetry system housed within the PM2.5 monitor enclosure.

Measurement signals produced by each pollutant detector and the meteorological monitors are acquired by an internal mini-computer that processes, scales, averages and stores the measurement data. The internal computer is integrated with a wireless (cellular service) data modem that supports bidirectional communications.

Monitoring methods and activities employed in the monitoring program, including instrument calibration, operation, maintenance and quality control (QC) activities, were performed in accordance with the protocols and procedures contained in the approved <u>Ambient Air Test Plan 2022 Proposed DDOT Transit</u> <u>Center at Former Michigan State Fairgrounds</u> dated June 17, 2022.

Discussion of Results

The results of PM₁₀, PM_{2.5}, NO₂, and VOC monitoring data are presented in Figures 2 through 5 in this report. These figures also include data reported from nearby air monitoring stations maintained by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) for the same time period. The EGLE data contained in this report are from monitors that are routinely subjected to calibration and maintenance. It should be noted that, as of the date of this report, the EGLE data have not yet been processed through EGLE final quality assurance procedures. The monitor locations for EGLE Sites can be found on the map provided in Appendix C (*Locations of MI EGLE Monitors Relative to the Former State Fairgrounds*).

The Clean Air Act requires EPA to establish National Ambient Air Quality Standards (NAAQS) for certain air pollutants considered harmful to public health and the environment. Air pollutants for which NAAQS are established include NO_2 , $PM_{2.5}$ and PM_{10} . NAAQS have not been established for VOCs. VOCs are considered precursors to the formation of ozone. Ozone is formed by photochemical reactions of NO_x and VOCs in certain ambient conditions.

The graphed data shown in Figures 2 through 5 present measured concentrations for these pollutants collected during the monitoring period relative to the Baseline concentration and corresponding NAAQS.

The NAAQS for NO₂, PM_{2.5}, and PM₁₀ were not exceeded during these monitoring periods.

Electronic records of all data and calibrations have been uploaded to the Montrose Data Server, where they will be archived for a period of at least three (3) years.

Pollutant Data Collected

Figure 2 – PM₁₀ Data

Figure 2 below presents the ambient PM_{10} measurement data collected at the DDOT Transit Center construction site on Parcel D of the former Michigan State Fairgrounds property during the monitoring period of 9/15/23 to 9/23/23. This graph is a plot of the PM_{10} measurement data as averaged over each 24-hour day (midnight-to-midnight) during the monitoring period. The PM_{10} daily averaging interval used for this monitoring program is consistent with the EPA 24-hour averaging interval used for NAAQS data reporting assessments. The primary and secondary PM_{10} NAAQS is equal to a daily averaged value of 150 micrograms per cubic meter ($\mu g/m^3$) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents in Figure 2 below represents the 24-hour PM_{10} NAAQS of 150 µg/m³. The solid red line represents the baseline PM_{10} concentration of 15.7 µg/m³ derived from the Baseline monitoring interval. The additional graphed data in Figure 2 presents 24-hour averaged PM_{10} data reported from each of the on-site monitors as well as corresponding data reported from the MI EGLE Dearborn continuous PM_{10} monitor, which is the closest state-operated PM_{10} monitor relative to the former Michigan State Fairgrounds property.

Figure 2: PM₁₀ Data

Figure 3 – PM_{2.5} Data

Figure 3 below presents the ambient $PM_{2.5}$ measurement data collected at the DDOT Transit Center construction site on Parcel D of the former Michigan State Fairgrounds property during the monitoring period starting on 9/15/23 and ending on 9/23/23. This graph is a plot of the $PM_{2.5}$ measurement data as averaged over each 24-hour day (midnight-to-midnight) during the monitoring period. The $PM_{2.5}$ daily averaging interval used for this monitoring program is consistent with the EPA 24-hour averaging interval used for NAAQS data reporting assessments. The primary and secondary $PM_{2.5}$ NAAQS is equal to a daily averaged value of 35 micrograms per cubic meter ($\mu g/m^3$) not to be exceeded more than once per year on average over 3 years.

The solid yellow line Figure 3 below represents the 24-hour PM_{2.5} NAAQS of 35 μ g/m³. The solid red line represents the baseline concentration of 3.8 μ g/m³ derived from the Baseline monitoring interval. The additional graphed data in Figure 3 presents 24-hour averaged PM_{2.5} data reported from each of the on-site monitors as well as corresponding data reported from the MI EGLE Dearborn and Detroit SW PM_{2.5} monitors, which are the closest state-operated continuous PM2.5 monitors relative to the former Michigan State Fairgrounds property. (Note: The MI EGLE also operates a PM_{2.5} monitor at the Oak Park monitoring site, which is located closer to the former Michigan State Fairgrounds property. The Oak Park PM_{2.5} monitor collects filter-based PM_{2.5} samples at 3-day intervals. Laboratory analytical results for filter-based PM samples are not available until approximately three months after the sample date. Consequently, the MI EGLE Oak Park PM_{2.5} data are not available for inclusion in this report.)

Figure 3: PM2.5 Data

Figure 4 – NO₂ Data

Figure 4 below presents the ambient NO₂ measurement data collected at the DDOT Transit Center construction site on Parcel D of the former Michigan State Fairgrounds property during the monitoring period starting on 7/15/23 and ending on 7/24/23. This graph is a plot of the NO₂ measurement data as averaged over one (1) hour intervals. This is consistent with the associated EPA primary NO₂ NAAQS: A 1-hour averaged value of 100 parts-per-billion (ppb) not to be exceeded more than once per year on average over 3 years.

The solid yellow line in Figure 4 represents the 1-hour NO₂ NAAQS of 100 ppb. The solid red line represents the baseline NO₂ concentration of 25.6 ppb derived from the Baseline monitoring interval. The additional graphed data in Figure 4 presents the 1-hour averaged data NO₂ data reported reported from each of the on-site monitors as well as corresponding data reported from the MI EGLE Detroit SW continuous NO₂ monitor, which is the closest state-operated NO₂ monitor relative to the former Michigan State Fairgrounds property.

Figure 4: NO2 Data

Page 10

Figure 5 – VOC Data

Figure 5 below presents the ambient VOC measurement data collected at the DDOT Transit Center construction site on Parcel D of the former Michigan State Fairgrounds property during the monitoring period starting on 7/15/23 and ending on 7/24/23. The US EPA does not promulgate a NAAQS for VOC.

The solid red line in Figure 5 represents the baseline hourly-averaged VOC concentration of 0.03 parts-permillion (ppm) derived from the Baseline monitoring interval. The additional graphed data in Figure 5 presents the 1-hour averaged data VOC data reported reported from each of the on-site monitors. MI EGLE does not monitor for VOC at any nearby MI EGLE monitoring sites. Consequently, no meaningful MI EGLE VOC data are available for comparison purposes.

Figure 5: VOC Data

Meteorological Data Collected

Figure 6 presents a wind rose derived from the wind speed and wind direction data collected from AQS-1 Upwind Monitor (S/N 1838) over the course of the monitoring period of 9/15/23 to 9/23/23. AQS-1 Monitor was deployed at a nominally upwind location at the DDOT Transit Center construction site, as depicted in Figure 1 in this report.

Figure 7 presents a wind rose derived from the wind speed and wind direction data collected from AQS-2 Downwind Monitor (S/N 1839) over the course of the monitoring period of 9/15/23 to 9/23/23. AQS-2 was deployed at a nominally downwind location at the DDOT Transit Center construction site, as depicted in Figure 1 in this report.

Figure 7 – Wind Rose From AQS-2 (1839) Downwind Meteorological Monitor

As is evident from the wind rose data, winds from the south, southwest, and west were predominant during the monitoring period of 9/15/23 to 9/23/23 Wind speeds recorded were also predominantly light, being mostly within the range of 0.5 to 3.6 m/s.

Data Quality Assurance/Quality Control

Quality Assurance/Quality Control

Quality assurance is a general term for the procedures used to ensure that a particular measurement meets the quality requirements for its intended use. Quality control for monitoring instrumentation consists of calibrations, sample flow rate verifications, leak checks and verification of other monitor performance indicators.

Monitoring methods and activities employed in the monitoring program, including instrument calibration, operation, maintenance and quality control (QC) activities, were performed in accordance with the protocols and procedures contained in the approved <u>Ambient Air Test Plan 2022 Proposed DDOT Transit</u> <u>Center at Former Michigan State Fairgrounds</u> dated June 17, 2022.

All quality control data for the on-site monitors operated at the former Michigan State Fairgrounds property can be found in Appendix A to this report, entitled "*Quality Assurance Logs*". Certificates of traceability for the calibration standards and equipment used in support of quality assurance checks are presented in Appendix B to this report entitled "*Calibration Certification Sheets*".

Conclusion

The ambient air quality monitoring data collected from the site during the second DDOT Transit Center construction-phase monitoring period of September 15 to September 23, 2023 do not exceed any NAAQS. During this monitoring period, the on-site monitors and nearby MI EGLE monitors all recorded periods during which ambient concentrations of $PM_{2.5}$, PM_{10} , NO₂ and VOC were elevated beyond the baseline concentrations. These elevated concentrations may be attributed in part to construction activities at the DDOT Transit Center site.

Signature Page

This report was prepared and reviewed by the following individuals:

Jul- Canf

Linda Quigley Data Manager Montrose Air Quality Services, LLC

Dave Cumming

David Cummings District Manager Montrose Air Quality Services, LLC

Appendices

Appendix A: Quality Assurance Logs

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit (DLZ)	Site:	Site: MTMS Lab		Date:	9/1	1/23
Time Off-Lir	ne: 11:30 EST	Time On-Line:	14:07 EST		Technician: Jeremy		y Levine
	Analyzer Model:	Aeroqual AQS-1	S/N:	1838	Last Cal:		8/30/23
Calibration Equipment Info.	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:		3/2/23
	Zero Air Model No:	Teledyne API	S/N:	n/a		Cert Date:	n/a
	Gas Supplier:	AirGas	Cyl. Conc. (PPM):	(PPM): 49.33 Cyl. Pressure (I		essure (PSIG)	2,080
VOC Sensor Module		<i>"</i>			"		

Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	
GAIN	1.389	

"AS FOUND" (UNADJUSTED) TEST DATA

Calibrator Flow and Test Gas Data					Observ	ed VOC	
Calibrator Gas Channel		Calibrator Air Channel		Known VOC	Response f	rom AQS-1	Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	splay Setting Actual Flow Rate Input Gas (SLPM) (SLPM) Conc. (PPM)		Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0153	0.00	0.00	0.00	-
0.0500	0.0502	4.9493	4.9760	0.49	0.52	0.00	6.1%
0.0500	0.0501	2.4493	2.4680	0.98	0.97	0.00	-1.0%

"AS LEFT" (ADJUSTED) TEST DATA

Calibrator Flow and Test Gas Data					Observ	ed VOC		
Calibrator Gas Channel Calibrator Air Channel		Known VOC	Response f	rom AQS-1	Error			
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)	
OFF	OFF	5.0000		0.00			-	

NOTES:

1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.

3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm ± 1 ppm.

Comments:

Values good, no adjustment needed.

Technician: *Jeremy Levine*

QA Review: Kembergster

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:				Unadjusted Cal.	Х	Adjusted Cal.		
Network:	City of De	troit (DLZ)	Site:	MTMS I	MTMS Lab		Date: 9/11/	
Time Off	-Line:	14:10 EST	Time On-Line:	17:45 E	ST	Technician: Jeremy l		Levine
Calibration Equipment Info.	Analyzer Model:		Aeroqual AQS-1	S/N:	1838	Last Cal:		8/31/23
	Calibrator Model No.:		Teledyne API	S/N:	69	Cal. Date:		3/2/23
	Zero Air Model No.:		Teledyne API	S/N:	n/a		Cert Date:	n/a
	Gas Supplier:		Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)		1,320
	Gas	Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate		130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	-0.6	
GAIN	1.213	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	tor Air Channel <u>Observed from</u>		rom AQS-1	(Observed		
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0452	0.0453	3.4548	3.4788	397.8	390.6	0.2	-1.8%	
0.0484	0.0485	4.9516	4.9793	298.6	295.6	0.5	-1.0%	
0.0323	0.0324	4.9677	4.9933	199.5	197.0	0.5	-1.3%	
0.0161	0.0163	4.9839	5.0110	100.3	97.5	0.3	-2.8%	
OFF	OFF	5.0000	5.0171	0.0	-0.1	0.4	-	
Linear Regression Analysis:								
Slope:	0.985	5510	Intercept:	-0.232968	Corr. C	oefficient (r):	0.999	971

NOTES:

1. The NO2 sensor zero response should be 0.0 ppb ± 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than ± 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb ± 0.2 ppb.

3. The NO2 sensor SPAN response should be 400 ppb ± 20 ppb (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ±20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb ± 20 ppb.

Comments:

Values good, no adjustment needed.

Technician: Jeremy Levine QA Review: Kenkeysters

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

	Calibratio	n Data on This	Form Are For:	Unadjusted Cal.			Adjusted Cal.	Х
Network:	City of De	troit (DLZ)	Site:	MTMS I	_ab	Date:		
Time Off	-Line:		Time On-Line:			Technician: Jeremy		Levine
	Analyzer Model:		Aeroqual AQS-1	S/N:	1838	Last Cal:		8/31/23
Calibration	Calibrator Model No.:		Teledyne API	S/N:	69	Cal. Date:		3/2/23
Equipment	Zero A	ir Model No.:	Teledyne API	S/N:	n/a	Cert Date:		n/a
Info.		Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)		1,380
	Gas Cylinder ID #:		D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate		130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	-0.6	
GAIN	1.213	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		<u>Observed f</u>	rom AQS-1	(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
							#VALUE!	
							#VALUE!	
							#VALUE!	
							#VALUE!	
OFF	OFF	5.0000		0.0			-	
Linear Regression Analysis:								
Slope:	#DI	V/0!	Intercept:	#DIV/0!	Corr. C	coefficient (r):	#DIV	//0!

NOTES:

1. The NO2 sensor zero response should be 0.0 ppb ± 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than ± 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb ± 0.2 ppb.

3. The NO2 sensor SPAN response should be 400 ppb ± 20 ppb (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ±20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb ± 20 ppb.

Comments:

Technician: Jeremy Levine QA Review: Kenkeysters

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit (DLZ)	Site:	Site: MTMS Lab		Date: 9/2		27/23		
Time Off-Lir	ne: 10:30 EST	Time On-Line:	12:54 E	ST	Technician:	Technician: Jeremy			
	Analyzer Model:	Aeroqual AQS-1	S/N:	1838		Last Cal:			
Calibration	Calibrator Model No:	Teledyne API	S/N:	69		Cal. Date:			
Info.	Zero Air Model No:	Teledyne API	S/N:	n/a		Cert Date:	n/a		
	Gas Supplier:	AirGas	Cyl. Conc. (PPM):	49.33	Cyl. Pressure (PSIG)		2,080		
VOC	VOC Sensor Module								

Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	
GAIN	1.389	

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator	Observed VOC					
Calibrator Gas Channel		Calibrator Air Channel		Known VOC	Response from AQS-1		Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0170	0.00	0.00	0.00	-
0.0500	0.0502	4.9493	4.9735	0.49	0.49	0.00	0.0%
0.0500	0.0501	2.4493	2.4676	0.98	0.92	0.00	-6.1%

"AS LEFT" (ADJUSTED) TEST DATA

	Calibrator		Observed VOC Response from AQS-1		Error		
Calibrator Gas Channel		Calibrator Air Channel				Known VOC	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000		0.00			-

NOTES:

1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.

3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm ± 1 ppm.

Comments:

Values good, no adjustment needed.

Technician: *Jeremy Levine*

QA Review: Kembergster

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

	Calibration Data on This Form Are For				Х			
Network:	City of De	troit (DLZ)	Site:	MTMS I	_ab	Date: 9/27		/23
Time Off	-Line:	12:58 EST	Time On-Line:	16:07 E	ST	Technician: Jeremy		Levine
	Analyzer Model:		Aeroqual AQS-1	S/N:	1838	Last Cal:		9/11/23
Calibration	Calibrator Model No.:		Teledyne API	S/N:	69	Cal. Date:		3/2/23
Equipment	Zero Air Model No.:		Teledyne API	S/N:	n/a	Cert Date:		n/a
Info.	Gas Supplier:		Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)		1,300
	Gas Cylinder ID #:		D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate		130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	-0.6	
GAIN	1.213	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel	annel <u>Observed from AQS-1</u>		rom AQS-1	(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0452	0.0453	3.4548	3.4781	397.9	395.0	0.5	-0.7%	
0.0484	0.0485	4.9516	4.9765	298.7	297.3	0.5	-0.5%	
0.0323	0.0324	4.9677	4.9911	199.6	198.1	0.6	-0.8%	
0.0161	0.0163	4.9839	5.0110	100.3	98.7	0.2	-1.6%	
OFF	OFF	5.0000	5.0182	0.0	0.6	0.6	-	
Linear Regression Analysis:								
Slope:	0.993	3154	Intercept:	0.004498	Corr. C	oefficient (r):	0.999	991

NOTES:

1. The NO2 sensor zero response should be 0.0 ppb ± 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than ± 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb ± 0.2 ppb.

3. The NO2 sensor SPAN response should be 400 ppb ± 20 ppb (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ±20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb ± 20 ppb.

Comments:

Values good, no adjustment needed.

Technician: Jeremy Levine QA Review: Kenkeysters

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:			Unadjusted Cal.			Adjusted Cal.	Х	
Network:	City of De	troit (DLZ)	Site:	MTMS I	_ab	Date:		
Time Off	-Line:		Time On-Line:			Technician:	Technician: Jeremy	
	Ana	alyzer Model:	Aeroqual AQS-1	S/N:	1838		Last Cal:	8/31/23
Calibration	Calibrato	r Model No.:	Teledyne API	S/N:	69		Cal. Date:	3/2/23
Equipment	Zero A	ir Model No.:	Teledyne API	S/N:	n/a		Cert Date:	n/a
Info.		Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl.	Pressure (PSIG)	1,380
	Gas	Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Modul	e Total Flow Rate	130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	-0.6	
GAIN	1.213	

	Calibrator Flow and Test Gas Data					NO ₂ Response		
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed from AQS-1		(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
							#VALUE!	
							#VALUE!	
							#VALUE!	
							#VALUE!	
OFF	OFF	5.0000		0.0			-	
	Linear Regression Analysis:							
Slope:	#DI	V/0!	Intercept:	#DIV/0!	Corr. C	oefficient (r):	#DIV	//0!

NOTES:

1. The NO2 sensor zero response should be 0.0 ppb ± 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than ± 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb ± 0.2 ppb.

3. The NO2 sensor SPAN response should be 400 ppb ± 20 ppb (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ±20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb ± 20 ppb.

Comments:

Technician: Jeremy Levine QA Review: Kenkeysters

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit (DLZ)	Site:	MTMS	Lab	Date:	9/11/23		
Time Off-Lir	ne: 11:30 EST	Time On-Line:	14:07 E	ST	Technician:	Jerem	Jeremy Levine	
	Analyzer Model:	Aeroqual AQS-1	S/N:	1839		Last Cal:	8/30/23	
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date: 3/2/23		3/2/23	
Info.	Zero Air Model No:	Teledyne API	S/N:	n/a	Cert Date: n/a		n/a	
	Gas Supplier:	AirGas	Cyl. Conc. (PPM):	49.33	Cyl. Pressure (PSIG) 2,080		2,080	
VOC	Concer Medule							

Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)		
OFFSET	0.00	0.00		
GAIN	1.416	1.479		

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator	Observed VOC Response from AQS-1					
Calibrator Gas Channel Calibrator Air Channel				Known VOC	Error		
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0153	0.00	0.00	0.00	-
0.0500	0.0502	4.9493	4.9760	0.49	0.49	0.00	0.0%
0.0500	0.0501	2.4493	2.4680	0.98	0.90	0.00	-8.2%

"AS LEFT" (ADJUSTED) TEST DATA

Calibrator Flow and Test Gas Data						Observed VOC	
Calibrator Gas Channel Calibrator Air Channel K			Known VOC	Response from AQS-1		Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0170	0.00	0.00	0.0	-
0.0500	0.0502	4.9493	4.9762	0.49	0.52	0.0	6.1%
0.0500	0.0501	2.4493	2.4686	0.98	0.96	0.0	-2.0%

NOTES:

1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.

3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm ± 1 ppm.

Comments:

values good, no adjustment needed.

Technician: *Jeremy Levine*

QA Review: Kembergster

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:			Unadjusted Cal.	Х		Adjusted Cal.		
Network:	City of De	troit (DLZ)	Site:	MTMS I	_ab	Date:	Date: 9/11/23	
Time Off	-Line:	14:10 EST	Time On-Line:	17:45 E	ST	Technician:	Jeremy	Levine
	Ana	alyzer Model:	Aeroqual AQS-1	S/N:	1839		Last Cal:	8/31/23
Calibration	Calibrator Model No.:		Teledyne API	S/N:	69	Cal. Date:		3/2/23
Equipment	Zero A	ir Model No.:	Teledyne API	S/N:	n/a	Cert Date:		n/a
Info.	Gas Supplier:		Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)		1,320
	Gas	Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate		130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.0	
GAIN	1.144	

	Calibrator Flow and Test Gas Data				NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		<u>Observed</u> f	rom AQS-1	(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0452	0.0453	3.4548	3.4788	397.8	392.0	0.5	-1.5%	
0.0484	0.0485	4.9516	4.9793	298.6	296.0	0.4	-0.9%	
0.0323	0.0324	4.9677	4.9933	199.5	196.2	0.3	-1.7%	
0.0161	0.0163	4.9839	5.0110	100.3	97.1	0.4	-3.2%	
OFF	OFF	5.0000	5.0171	0.0	-0.8	0.3	-	
	Linear Regression Analysis:							
Slope:	0.99	0537	Intercept:	-1.254498	Corr. C	oefficient (r):	0.999	979

NOTES:

Г

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:				Unadjusted Cal.			Adjusted Cal.	Х
Network:	City of De	troit (DLZ)	Site:	MTMS I	MTMS Lab		8/31/	/23
Time Off	-Line:		Time On-Line:			Technician:	Jeremy	Levine
	Ana	alyzer Model:	Aeroqual AQS-1	S/N:	1839	Last Cal:		8/31/23
Calibration	Calibrato	r Model No.:	Teledyne API	S/N:	69	Cal. Date:		3/2/23
Equipment	Zero A	ir Model No.:	Teledyne API	S/N:	n/a	Cert Date:		n/a
Info.		Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl.	Pressure (PSIG)	1,380
	Gas	Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate		130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.0	
GAIN	1.144	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Re	sponse	Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed from AQS-1		(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
							#VALUE!	
							#VALUE!	
							#VALUE!	
							#VALUE!	
OFF	OFF	5.0000		0.0			-	
	Linear Regression Analysis:							
Slope:	#DI	V/0!	Intercept:	#DIV/0!	Corr. C	oefficient (r):	#DIV	//0!

NOTES:

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit (DLZ)	Site:	e: MTMS Lab		Date: 9/2		27/23
Time Off-Line: 10:30 EST		Time On-Line:	12:54 EST		Technician: Jeremy Levine		y Levine
	Analyzer Model:	Aeroqual AQS-1	S/N:	1839	Last Cal:		9/11/23
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:		3/2/23
Equipment Info.	Zero Air Model No:	Teledyne API	S/N:	n/a		Cert Date:	n/a
	Gas Supplier:	AirGas	Cyl. Conc. (PPM):	49.33	Cyl. Pressure (PSIG)		2,080
VOC	Sensor Module						

Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)		
OFFSET	0.00	0.00		
GAIN	1.479	1.573		

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator		Observ				
Calibrator	Gas Channel	Calibrator Air Channel		Known VOC	Response from AQS-1		Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0170	0.00	0.00	0.00	-
0.0500	0.0502	4.9493	4.9735	0.49	0.47	0.00	-4.1%
0.0500	0.0501	2.4493	2.4676	0.98	0.87	0.00	-11.2%

"AS LEFT" (ADJUSTED) TEST DATA

	Calibrator	Flow and Test Gas I	Data	Observed VOC				
Calibrator	Gas Channel	Calibrator Air Channel		Known VOC	Response from AQS-1		Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	ow Rate Display Setting Actual Flow Rat PM) (SLPM) (SLPM)		Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)	
OFF	OFF	5.0000	5.0152	0.00	0.00	0.0	-	
0.0500	0.0502	4.9493	4.9747	0.49	0.51	0.0	4.1%	
0.0500	0.0501	2.4493	2.4696	0.98	0.94	0.0	-4.1%	

NOTES:

1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.

3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm ± 1 ppm.

Comments:

Technician: *Jeremy Levine*

QA Review: Kenkeyster

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

	Calibratio	n Data on This	Form Are For:	Unadjusted Cal.	Х			
Network:	c: City of Detroit (DLZ)		Site:	MTMS Lab		Date: 9/27/23		/23
Time Off	-Line:	12:58 EST	Time On-Line:	16:07 E	ST	Technician: Jeremy Levi		Levine
	Analyzer Model:		Aeroqual AQS-1	S/N:	1839	Last Cal:		9/11/23
Calibration	Calibrator Model No.:		Teledyne API	S/N:	69	Cal. Date:		3/2/23
Equipment	Zero Air Model No.:		Teledyne API	S/N:	n/a	Cert Date:		n/a
Info.	Gas Supplier:		Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)		1,300
	Gas Cylinder ID #:		D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate		130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.0	
GAIN	1.144	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Re	sponse	Δ%		
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed from AQS-1		(Observed		
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL	
0.0452	0.0453	3.4548	3.4781	397.9	394.2	0.8	-0.9%		
0.0484	0.0485	4.9516	4.9765	298.7	298.1	0.4	-0.2%		
0.0323	0.0324	4.9677	4.9911	199.6	197.7	0.5	-1.0%		
0.0161	0.0163	4.9839	5.0110	100.3	98.1	0.6	-2.2%		
OFF	OFF	5.0000	5.0182	0.0	-0.2	0.6	-		
	Linear Regression Analysis:								
Slope: 0.994563 Intercept:				-0.636495	Corr. C	oefficient (r):	0.999	975	

NOTES:

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

	Calibratio	n Data on This	Form Are For:	Unadjusted Cal.			Adjusted Cal.	Х
Network:	City of Detroit (DLZ)		Site:	MTMS Lab		Date: 8/31		/23
Time Off	-Line:		Time On-Line:			Technician:	Levine	
	Analyzer Model:		Aeroqual AQS-1	S/N:	1839	Last Cal:		8/31/23
Calibration	Calibrator Model No.:		Teledyne API	S/N:	69	Cal. Date:		3/2/23
Equipment	Zero Air Model No.:		Teledyne API	S/N:	n/a	Cert Date:		n/a
Info.	Gas Supplier:		Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)		1,380
	Gas Cylinder ID #:		D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate		130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.0	
GAIN	1.144	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Re	sponse	Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed from AQS-1		(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
							#VALUE!	
							#VALUE!	
							#VALUE!	
							#VALUE!	
OFF	OFF	5.0000		0.0			-	
	Linear Regression Analysis:							
Slope:	#DI	V/0!	Intercept:	#DIV/0!	Corr. C	oefficient (r):	#DIV	//0!

NOTES:

Using Bios Dry-Cal Flow Standard(s)

PPLICATION			0			Marathan	Datrait DANC		
Calibrator IV	IODEI/S/IN:	TAPI 1700; SN 6	9		NETWORK:		Jetroit PAMS	SITE:	IN I INS
Barometric I	Dile. Pressure (Palin	mmHa).	7/3 0		Calibrated by:	Jeremy Levine			
Flow Standa	ard Model	Mesa Lab	s Defender 530+	M. 530+ H	Air Temp. (Ta.	in deg. C).	23.1	(=deg. K):	296.3
Flow Standa	ard Base S/N:	Not Applicable		, 000111	Flow Cell Mode	el No:	Defender 530+ N	V Defender 530+ H	20010
Certification	Date:	Not Applicable			Flow Cell S/N:		205428	205361	
					Flow Cell Certif	ication Date:	7/22/2022	7/21/2022	
Check One	9:	X	Air Channe	el		_Gas Chan	nel		
(X)		FI	ow Meter Readin	ngs		Average		Flow Rate	Δ%
MFC Drive		(5 set	s of 10 averaged	flows)		Flow		From Previous	("New Cal Flow"
Voltage	F ₁	F ₂	F ₃	F ₄	F ₅	(F1F5)	(in 000m)	Cal	Vs
(mVDC)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(in <u>scorr</u>)	(SLPM)	"Prev. Cal Flow")
5000	10.8520	10.8580	10.8420	10.8600	10.8530	10.853	7.0	10.832	-0.2%
4750	10.3170	10.3160	10.3150	10.3110	10.3160	10.315	2.3	10.266	-0.5%
4500	9.6906	9.6895	9.6869	9.6877	9.6923	9.689	2.2	9.708	0.2%
4250	9.1475	9.1495	9.1520	9.1448	9.1438	9.148	3.4	9.157	0.1%
4000	8.5987	8.6045	8.6008	8.6002	8.5984	8.601	2.4	8.603	0.0%
3750	8.0527	8.0573	8.0563	8.0529	8.0549	8.055	2.0	8.053	0.0%
3500	7.5167	7.5172	7.5134	7.5132	7.5105	7.514	2.8	7.507	-0.1%
3250	6.9823	6.9845	6.9790	6.9783	6.9767	6.980	3.2	6.967	-0.2%
3000	6.4503	6.4485	6.4492	6.4473	6.4441	6.448	2.4	6.430	-0.3%
2750	5.9049	5.8928	5.8966	5.9052	5.9054	5.901	5.9	5.879	-0.4%
2500	5.3137	5.3172	5.3185	5.3195	5.3172	5.317	2.2	5.334	0.3%
2250	4.7718	4.7757	4.7813	4.7790	4.7793	4.777	3.7	4.801	0.5%
2000	4.2360	4.2314	4.2315	4.2332	4.2360	4.234	2.3	4.265	0.7%
1750	3.6825	3.6817	3.6854	3.6793	3.6879	3.683	3.3	3.724	1.1%
1500	3.1393	3.1393	3.1519	3.1439	3.1461	3.144	5.3	3.189	1.4%
1250	2.6238	2.6284	2.6290	2.6273	2.6287	2.627	2.1	2.650	0.9%
1000	2.0926	2.0917	2.0912	2.0918	2.0917	2.092	0.5	2.115	1.1%
750	1.5499	1.5498	1.5498	1.5505	1.5516	1.550	0.8	1.579	1.8%
500	1.0163	1.0157	1.0146	1.0148	1.0145	1.015	0.8	1.037	2.1%
250	0.48024	0.48137	0.48059	0.48179	0.48179	0.481	0.7	0.493	2.4%
SLOPE:	0.002180501		INTERCEPT:	-0.102560589	CORRELAT	ION COEFF (r)		0.999962608	

Comments:

echnician:

Jeremy Levine

(signature)

3/2/2023

TAPI T700 MFC Calibration Using Bios Dry-Cal Flow Standard(s) CALIBRATOR APPLICATION INFORMATION:

Calibrator M	odel/S/N:	-	TAPI T700; SN 6	9	NETWORK:	Marathon Detroit PAMS SITE: MTM			MTMS		
Calibration S	Site:		MTMS Site		Test Date:		3/1/2023				
Barometric F	Pressure (Pa, in r	nmHg):	74	0.0	Calibrated by:			J Levine			
Flow Standa	rd Model:	Mesa	Labs Defender 5	530+ L	Air Temp. (Ta,	in deg. C):	22.9	(=deg. K):	296.1		
Flow Standa	rd Base S/N:		Not Applicable		Flow Cell Mode	el No:		530+ Low Flo	W		
Base Cert	tification Date:		Not Applicable		Flow Cell S/N:			205663			
					Flow Cell Certi	fication Date:		8/4/2022			
Che	ck One:		Air Channe		X	_Gas Chanr	nel				
(X)			0.0538			Average		Flow Rate	Δ%		
MFC Drive		(5 set	s of 10 averaged	flows)		Flow		From Previous	("New Cal Flow"		
Voltage	F₁	F_2	F ₃	F ₄	F ₅	(F1F5)		Cal			
(mVDC)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(in <u>SCCM</u>)	(SLPM)	"Prev. Cal Flow")		
5000	0.05511	0.05513	0.05514	0.05507	0.05504	0.0551	0.04	0.0549	-0.3%		
4750	0.05239	0.05240	0.05240	0.05241	0.05240	0.0524	0.01	0.0523	-0.2%		
4500	0.04958	0.04960	0.04961	0.04963	0.04964	0.0496	0.02	0.0496	-0.1%		
4250	0.04669	0.04674	0.04676	0.04680	0.04683	0.0468	0.05	0.0468	0.1%		
4000	0.04415	0.04416	0.04412	0.04406	0.04405	0.0441	0.05	0.0441	0.1%		
3750	0.04147	0.04148	0.04146	0.04150	0.04145	0.0415	0.02	0.0414	-0.2%		
3500	0.03870	0.03873	0.03874	0.03873	0.03875	0.0387	0.02	0.0387	-0.2%		
3250	0.03587	0.03589	0.03591	0.03593	0.03597	0.0359	0.04	0.0359	-0.1%		
3000	0.03329	0.03327	0.03324	0.03320	0.03318	0.0332	0.05	0.0331	-0.5%		
2750	0.03054	0.03055	0.03056	0.03057	0.03056	0.0306	0.01	0.0304	-0.5%		
2500	0.02775	0.02777	0.02778	0.02779	0.02781	0.0278	0.02	0.0277	-0.5%		
2250	0.02502	0.02498	0.02500	0.02498	0.02499	0.0250	0.02	0.0249	-0.3%		
2000	0.02231	0.02232	0.02232	0.02232	0.02230	0.0223	0.01	0.0222	-0.7%		
1750	0.01950	0.01951	0.01952	0.01952	0.01953	0.0195	0.01	0.0193	-0.9%		
1500	0.01668	0.01667	0.01667	0.01668	0.01669	0.0167	0.01	0.0166	-0.6%		
1250	0.01392	0.01393	0.01394	0.01394	0.01392	0.0139	0.01	0.0138	-0.9%		
1000	0.01110	0.01106	0.01107	0.01110	0.01111	0.0111	0.02	0.0110	-1.0%		
750	0.00831	0.00831	0.00832	0.00832	0.00831	0.0083	0.01	0.0082	-1.3%		
500	0.00548	0.00545	0.00547	0.00546	0.00546	0.0055	0.01	0.0054	-1.9%		
250	0.00261	0.00264	0.00262	0.00262	0.00262	0.0026	0.01	0.0025	-6.0%		
SLOPE:	0.000011		INTERCEPT:	0.000167747		CORRELATION	I COEFF (r):	0.999979775			
Comments:											

Calibrator M	odel/S/N:		API T700; SN 6	9	NETWORK: Marathon Detroit PAMS SITE:				MTMS		
Calibration S	Site:		MTMS Site		Test Date:		3/1/2023	<u> </u>			
Barometric F	Pressure (Pa, in i	nmHg):	74	0.0	Calibrated by:			J Levine			
Flow Standa	rd Model:	Mesa	Labs Defender 5	530+ L	Air Temp. (Ta,	in deg. C):	22.9	(=deg. K):	296.1		
Flow Standa	rd Base S/N:		Not Applicable		Flow Cell Mode	el No:		530+ Low Flo	W		
Base Cert	ification Date:		Not Applicable		Flow Cell S/N:			205663			
					Flow Cell Certi	fication Date:		8/4/2022			
Che	ck One:		Air Channe		X	_Gas Chanr	nel				
(X)			0.0538			Average		Flow Rate	Δ%		
MFC Drive		(5 sets	s of 10 averaged	flows)		Flow		From Previous	("New Cal Flow"		
Voltage	F₁	F ₂	F ₃	F₄	F ₅	(F1F5)		Cal			
(mVDC)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(in <u>SCCM</u>)	(SLPM)	"Prev. Cal Flow")		
5000	0.05511	0.05513	0.05514	0.05507	0.05504	0.0551	0.04	0.0549	-0.3%		
4750	0.05239	0.05240	0.05240	0.05241	0.05240	0.0524	0.01	0.0523	-0.2%		
4500	0.04958	0.04960	0.04961	0.04963	0.04964	0.0496	0.02	0.0496	-0.1%		
4250	0.04669	0.04674	0.04676	0.04680	0.04683	0.0468	0.05	0.0468	0.1%		
4000	0.04415	0.04416	0.04412	0.04406	0.04405	0.0441	0.05	0.0441	0.1%		
3750	0.04147	0.04148	0.04146	0.04150	0.04145	0.0415	0.02	0.0414	-0.2%		
3500	0.03870	0.03873	0.03874	0.03873	0.03875	0.0387	0.02	0.0387	-0.2%		
3250	0.03587	0.03589	0.03591	0.03593	0.03597	0.0359	0.04	0.0359	-0.1%		
3000	0.03329	0.03327	0.03324	0.03320	0.03318	0.0332	0.05	0.0331	-0.5%		
2750	0.03054	0.03055	0.03056	0.03057	0.03056	0.0306	0.01	0.0304	-0.5%		
2500	0.02775	0.02777	0.02778	0.02779	0.02781	0.0278	0.02	0.0277	-0.5%		
2250	0.02502	0.02498	0.02500	0.02498	0.02499	0.0250	0.02	0.0249	-0.3%		
2000	0.02231	0.02232	0.02232	0.02232	0.02230	0.0223	0.01	0.0222	-0.7%		
1750	0.01950	0.01951	0.01952	0.01952	0.01953	0.0195	0.01	0.0193	-0.9%		
1500	0.01668	0.01667	0.01667	0.01668	0.01669	0.0167	0.01	0.0166	-0.6%		
1250	0.01392	0.01393	0.01394	0.01394	0.01392	0.0139	0.01	0.0138	-0.9%		
1000	0.01110	0.01106	0.01107	0.01110	0.01111	0.0111	0.02	0.0110	-1.0%		
750	0.00831	0.00831	0.00832	0.00832	0.00831	0.0083	0.01	0.0082	-1.3%		
500	0.00548	0.00545	0.00547	0.00546	0.00546	0.0055	0.01	0.0054	-1.9%		
250	0.00261	0.00264	0.00262	0.00262	0.00262	0.0026	0.01	0.0025	-6.0%		
SLOPE:	0.000011		INTERCEPT:	0.000167747		CORRELATION	COEFF (r):	0.999979775			
Comments:											

Technician: Jeremy Levine

(signature)

Airgas Specialty Gases Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: TRACEABILITY STANDARD Part Number:

Cylinder Number: Laboratory:

X02NI99T33W0004 D068357 124 - Chicago (SAP) - IL Reference Number: 54-402006473-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

32.0 CF 2218 PSIG 660 Jan 26, 2021

Expiration Date: Jan 26, 2024

This cylinder has been analytically certified as directly traceable to NIST with a total analytical uncertainty as stated below with a confidence level of 95%, in accordance with Airgas ISO procedures. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

			Do Not Use This C	Sylinder Below 100 psig.								
	ANALYTICAL RESULTS											
Compo	nent	Requeste Concentr	ed ration	Actual Concentration	Total Relat Uncertaint	ive y						
NITROG NITROG	EN DIOXIDE EN	30.00 PPM Balance		30.95 PPM	+/- 1% NIST	Traceable						
Туре	Lot ID	Cylinder No	CALIBRATIO Concentration	N STANDARDS	Uncertainty	Expiration Date						
GMIS	401438584104	EB0120492	48.18 PPM NITRO	GEN DIOXIDE/NITROGEN	+/- 1.8%	Nov 01, 2022						
Instrum	ent/Make/Model		ANALYTICA Analytical Princip	L EQUIPMENT le Las	t Multipoint Calibr	ation						
MKS FTI	R NO2 017707558	an a	FTIR	Jan	07, 2021	en nom mit nämne mände med keine sin fra dalameter mer den det den nationalen seksen seksen seksen av det						

Triad Data Available Upon Request

PERMANENT NOTES: OXYGEN ADDED TO MAINTAIN STABILITY

Approved for Release

Page 1 of 54-402006473-1

Airgas Specialty Gases Airgas USA, LLC 24075 US Hwy 6 Stryker, OH 43557 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED STANDARD-SPEC

Part Number:	X02NI99
Cylinder Number:	EB01125
Laboratory:	124 - Str
Analysis Date:	Mar 31, 2
Lot Number:	141-4020

(02NI99C15A0104 EB0112566 24 - Stryker (SAP) - OH /lar 31, 2021 41-402072346-1 Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet:

141-402072346-1 144.4 CF 2015 PSIG 350

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

	ANALYTICAL RESULTS								
Component	Req Conc	Actual Concentration (Mole %)	Analytical Uncertainty						
ISOBUTYLENE NITROGEN	50.00 PPM Balance	49.33 PPM	-+/- 2%						

Approved for Release

Appendix B: Calibration Certification Sheets

GENERAL INFORMATION

Instrument Type	Dust Sentry Pro
Serial Number	DP 11102021-1838

Aeroqual Connect

Version	V1.18.0	OS Image	V4.1.18.0
WiFi SSID	DP 11102021-1838	Password	Aeroqual
Default User	Administrator	Password	aqmadmin
Sensor List	DP_SensorList_V8.3	.6.aql	

Please contact Aeroqual for login and password to access your instrument on Aeroqual Cloud (http://cloud.aeroqual.com).

Instrument Configuration

Particle Ch	annels	Environmental	Channels	Communication / Software
 TSP PM 1 PM 2.5 PM 10 	8PC 0.3 8PC 0.5 8PC 0.7 8PC 1.0 8PC 2.0 8PC 2.5 8PC 3.0 8PC 5.0 8PC 10	TEMP RH ITEMP WS WD AN1 AN2 AN3 Freq	RAIN SOLAR HAIL PRESS AIR T AIR RH LAT LON ALT Pyrano Leq	Connect Support Basic Plus 3G modem

Integrated Modules

Туре	Serial No.	QC	Туре	Serial No.	QC
ARK1124C	KSA5124761	Pass	Met One 9722-1	B14058	Pass
Pump Module	AQM PMP03 2804211-039	Pass	Electronics Module	AQM M1IO 2108101-042	

For technical, maintenance and service information, please refer to Dust Monitor User Guide or contact Aeroqual for access to free online training (http://training.aeroqual.com).

PERFORMANCE REPORT

Calibration Data

Item	Value	Unit	Item	Value	Unit
Sample System Leak Tightness	Pass	1	Inlet Heater	Pass	1
Sample Flow Rate	1.004	SLPM	Sheath Flow Rate	1.301	SLPM
Zero Filter Reference Reading	0.00	µg/m ³			

Standards Used

Standard	Make	Serial Number	Calibration Due
Vacuum Gauge	SMC	VAC005	N/A
Flow Meter	TSI	4140 1438 025	24/11/2021

Activate Negative Number Filters on all gas and dust channels: YES

FACTORY MODULE SETTINGS

MOD ULE	VER SION	HO	H1	H2	H3	TIMA	TIMR	TEMA	TEMR	PWML	Р₩МН	HTR	GAIN	Gain	Offset
PM1	4.0.0	0.000	1.000	760.000	298.150	2	60	1.4	2	0	0	1.00	1	1.000	0.000
РМ2. 5	4.0.0	0.000	1.000	760.000	298.150	2	60	1.4	2	0	0	1.00	1	1.000	0.000
PM10	4.0.0	0.000	1.000	760.000	298.150	2	60	1.4	2	0	0	1.00	1	1.000	0.000
TSP	4.0.0	0.000	1.000	760.000	298.150	2	60	1.4	2	0	0	1.00	1	1.000	0.000
Batte ry volta ge	1.3.0	7.200	0.000	0.000	0.000	0	1000	0	0	0	0	0.00	0	0.000	0.000

Approvals

QC Technician	@ Ariyan Hassan	QC Approval	@ Jeremy Turner
Date	12 Oct 2021	Date	13 Oct 2021

Calibration Certificate(s)

Met O Instrume	1600 Washington B Grants Pass, OR 9 (541) 471-7111 (541) 471-7116 (Fa Service@metone.co ints	Blvd 7526 ix) iom	Cali	bration	Certifica	ate		
The calibration results on this report certify that this instrument complies with the product specifications at the time of calibration. Calibration was performed according to accepted industry methods using equipment, procedures, and standards that are traceable to NIST and ISO.								
Recommended calibration interval is 12 months from the first day of use.								
Instrume	nt Model# 9722-	1		Instrument Se	rial# B14058			
Date of C Brittne	alibration 5/7/20	21		R	Sensor # <u>1</u> 3	862		
Calibrat	ion Technician		Oua	lity Check				
	Temperature	24 ^o C		Relative Humidit	v 26 %			
Test Proc	edure: 9722-610 PSL Size (µm)	0 Test Results	Test Spec.	Lot# NIST	Expiration			
	0.3	Pass	± 10%	223077	04/30/2023			
	0.5	Pass	± 10%	219480	11/30/2022			
	0.7	Pass	± 10%	229561	08/31/2023			
	1.0	Pass	± 10%	229294	8/31/2023			
	2.0	Pass	± 10%	231222	09/30/2023			
	3.0	Pass	± 10%	231458	09/30/2023			
	5.0	Pass	± 10%	214115	07/31/2022			
	70.0	Pass	170%	230028	09/30/2023			
Г	Standards	Model	1	SN	Cal Due			
	Particle Counter	GT-526S		X17420	6/20/2021			
	DMM	117 Multimet	ter 4	9320156	6/15/2021			
	FLOWMETER	4040	40	401945009	1/13/2022			
	RH/TEMP SENSOR	G3120		G4587	2/2/2022	_		
This cali	bration certificate s	hall not be rep	roduced excep	ot in full, witho	ut the written			
approval	oj mei one instrui	nenis inc.						

Document 9722-9600 Rev B

54072

Test report no. HEL221270089

TEST REPORT

WXT530 series
WXT536
6B1B2A2D1A1B
U1270032
Vaisala Oyj, Finland
27 March 2022

This test report certifies that the product was thoroughly tested and inspected, and found to meet its published test limits when it was shipped from Vaisala.

Test	Result	Lower limit	Upper limit	Unit
Rain response	385	345	575	mV
Zero wind speed	0	0	0.4	m/s
Pressure difference	0.09	-1	1	hPa
Temperature difference	-0.87	-2	2	°C
Humidity difference	-1.44	-10	10	%RH
Heating current	0.73	0.6	0.8	A
Current (service port)	4.23	0.5	6	mA
Communication (service port)	pass	PASS	PASS	-
Current (main port)	3.68	0.5	6	mA
Communication (main port)	pass	PASS	PASS	-

Ambient conditions / Humidity 8.65 ±5 %RH, Temperature 22.05 ±1 °C, Pressure 1022.07 ±1 hPa.

Signature MAR Technician

Vaisala is ISO 9001, ISO 14001 and AQAP 2110 certified company.

CALIBRATION CERTIFICATE

This Certificate may only be reproduced in full, except with the prior written permission by the issuing Laboratory.

Certificate Number:

Instrument: Serial Number:	PTUMODULE U1130038	Approved by:	
Manufacturer:	Vaisala Oyj		
Issue Date:	2022-03-27	AS	Digitally signed by: Saastamoinen Anss Date: 2022-03-27 10-53:11 (+03:00)

The humidity sensor of the instrument was calibrated by comparing the instrument's humidity reading to a generated reference humidity reading. The reference humidity reading was calculated based on two-pressure humidity generation principle, using the measurement results of saturator pressure and temperature and calibration chamber pressure and temperature.

The temperature sensor of the instrument was calibrated by comparing the instrument's temperature readings to a reference thermometer. The pressure sensor of the instrument was calibrated by comparing the instrument's pressure readings to a reference barometer.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %. The measurement results are traceable to the international system of units (SI) through national metrology institutes (NIST USA, MIKES Finland, or equivalent) or via ISO/IEC 17025 accredited calibration laboratories.

Humidity and temperature calibration results, calibration date 2022-03-23

Reference Humidity [%rh]	Reference Temperature [°C]	Observed Humidity [%rh]	Observed Temperature [°C]	Humidity Error	Acceptance Limit
0.1	22.52	0.0	22.51	-0.1	±3.0
15.0	22.52	14.7	22.51	-0.3	±3.0
33.0	22.52	32.8	22.52	-0.2	±3.0
54.0	22.53	53.9	22.53	-0.1	±3.0
75.1	22.53	75.1	22.53	0.0	±3.0
95.3	22.54	96.4	22.54	1.1	±5.0

Reference Temperature	Observed Temperature	Temperature Error	Acceptance Limit
[°C]	[°C]	[00]	[00]
22.53	22.53	0.00	±0.30

Ambient conditions in humidity and temperature calibrationHumidity [%rh]Temperature [°C]Pressure [hPa]19 ±425 ±21019 ±20

Reference equipment used in Humidity and temperature calibration

Туре	Identity Number	Certificate Number	Calibration date	Calibration due date
PTU307	19542	K008-E05564	2021-11-08	2022-11-30
PXI Pt-100 sensor	19923	K008-E06355	2021-12-12	2022-12-31
DPS823B	19906	K008-E05706	2021-11-15	2022-11-30
PXI Pt-100 sensor	19921	K008-E06357	2021-12-12	2022-12-31
PXIe-4080	19920	E06358	2021-12-13	2022-12-31

Pressure calibration results, calibration date 2022-03-16

Reference Pressure	Observed Pressure	Pressure Error	Acceptance limit
[hPa]	[hPa]	[hPa]	[hPa]
601.3	601.3	0.0	±0.5
800.6	800.6	0.0	±0.5
901.0	901.0	0.0	±0.5
1080.8	1080.8	0.0	±0.5

Reference equipment used in pressure calibration

Туре	Identity Number	Certificate Number	Calibration date	Calibration due date
Fluke RPM4	17966	E06297	2021-12-09	2022-06

Calibration uncertainty (k=2, ~95% confidence level):

 Humidity
 ±0.6 %rh @ 0...40 %rh, ±1.0 %rh @ 40...95 %rh

 Temperature
 ±0.10 °C

 Pressure
 ±0.3 hPa

Vaisala Oyj | PO Box 26, FI-00421 Helsinki, Finland Phone +358 9 894 91 | Fax +358 9 8949 2227 Email helpdesk@vaisala.com | www.vaisala.com Domicile Vantaa, Finland | VAT FI01244162 | Business ID 0124416-2

GENERAL INFORMATION

Instrument Type	Dust Sentry Pro	
Serial Number	DP 11102021-1839	

Aeroqual Connect

Version	V1.18.0	OS Image	V4.1.18.0	
WiFi SSID	DP 11102021-1839	Password	Aeroqual	
Default User	Administrator	Password	aqmadmin	
Sensor List	DP_SensorList_V8.3.6.aql			

1 Please contact Aeroqual for login and password to access your instrument on Aeroqual Cloud (http://cloud.aeroqual.com).

Instrument Configuration

Particle Cha	annels	Environmental	Channels	Communication / Software
 TSP PM 1 PM 2.5 PM 10 	8PC 0.3 8PC 0.5 8PC 0.7 8PC 1.0 8PC 2.0 8PC 2.5 8PC 3.0 8PC 5.0 8PC 10	TEMP RH ITEMP WS WD AN1 AN2 AN3 Freq	RAIN SOLAR HAIL PRESS AIR T AIR RH LAT LON ALT Pyrano Leq	Connect Support Basic Plus 3G modem

Integrated Modules

Туре	Serial No.	QC	Туре	Serial No.	QC
ARK1124C	KSA5124614	Pass	Met One 9722-1	B14186	Pass
Pump Module	AQM PMP03 2804211-023	Pass	Electronics Module	AQM M1IO 2108101-074	

(For technical, maintenance and service information, please refer to Dust Monitor User Guide or contact Aeroqual for access to free online training (http://training.aeroqual.com).

PERFORMANCE REPORT

Calibration Data

Item	Value	Unit	ltem	Value	Unit
Sample System Leak Tightness	Pass	/	Inlet Heater	Pass	1
Sample Flow Rate	0.999	SLPM	Sheath Flow Rate	1.251	SLPM
Zero Filter Reference Reading	0.00	µg/m ³			

Standards Used

Standard	Make	Serial Number	Calibration Due
Vacuum Gauge	SMC	VAC005	N/A
Flow Meter	TSI	4140 1438 025	24/11/2021

Activate Negative Number Filters on all gas and dust channels: YES

FACTORY MODULE SETTINGS

MOD ULE	VER SION	HO	H1	H2	H3	TIMA	TIMR	TEMA	TEMR	PWML	PWMH	HTR	GAIN	Gain	Offset
PM1	4.0.0	0.000	1.000	760.000	298.150	2	60	1.4	2	0	0	1.00	1	1.000	0.000
PM2. 5	4.0.0	0.000	1.000	760.000	298.150	2	60	1.4	2	0	0	1.00	1	1.000	0.000
PM10	4.0.0	0.000	1.000	760.000	298.150	2	60	1.4	2	0	0	1.00	1	1.000	0.000
TSP	4.0.0	0.000	1.000	760.000	298.150	2	60	1.4	2	0	0	1.00	1	1.000	0.000
Batte ry volta ge	1.3.0	7.200	0.000	0.000	0.000	0	1000	0	0	0	0	0.00	0	0.000	0.000

Approvals

QC Technician	@ Ariyan Hassan	QC Approval	@ Jeremy Turner
Date	12 Oct 2021	Date	13 Oct 2021

aeroqual[®]

Calibration Certificate(s)

Met Or Instrumer	1600 Washington B Grants Pass, OR 9 (541) 471-7111 (541) 471-7116 (Fa Service@metone.cc	llvd 7526 x) om	Cali	bration	Certificate			
The calibration results on this report certify that this instrument complies with the product specifications at the time of calibration. Calibration was performed according to accepted industry methods using equipment, procedures, and standards that are traceable to NIST and ISO.								
Recomm	ended calibration in	terval is 12 mor	ths from the f	irst day of use.				
Instance	nt Madal# 0722	1		Instanto	BIANS			
Instrume	ST22-	004		Instrument Se	D14100			
Date of C	alibration 5/79/2	027		1	Sensor # 1379			
Brittne	y Wentowski 🗛 🗸	b	-	K /m				
Calibrati	ion Technician	0.	Qual	ity Check	00 0/			
	Temperature	<u>24</u> °C		Relative Humidi	y <u>20</u> %			
Test Proc	edure: 9722-610 PSL Size (µm)	0 Test Results	Test Spec.	Lot# NIST	Expiration			
	0.3	Pass	± 10%	223077	04/30/2023			
	0.5	Pass	± 10%	219480	11/30/2022			
	0.7	Pass	± 10%	229561	08/31/2023			
	1.0	Pass	± 10%	229294	8/31/2023			
	2.0	Pass	± 10%	231222	09/30/2023			
	3.0	Pass	± 10%	231458	09/30/2023			
	5.0	Pass	± 10%	214115	07/31/2022			
	10.0	Pass	± 10%	230028	09/30/2023			
_					I]			
	Standards	Model		SN	Cal Due			
	Particle Counter			X17420	6/20/2021			
	DMM	117 Multime	ter 4	9320156	6/15/2021			
	FLOWMETER	4040	40-	401945009	1/13/2022			
	RH/TEMP SENSOR			G4587	2/2/2022			
This call	ibration certificate s	hall not be rep	produced excep	ot in full, witho	ut the written			
approval	of Met One Instru	ments Inc.						

Document 9722-9600 Rev 8

54226

Vaisala is ISO 9001, ISO 14001 and AQAP 2110 certified company.

CALIBRATION CERTIFICATE

This Certificate may only be reproduced in full, except with the prior written permission by the issuing Laboratory.

Certificate Number:

Instrument: Serial Number:	PTUMODULE U1130042	Approved by:	
Manufacturer:	Vaisala Oyj		
Issue Date:	2022-03-27	AD	Digitally signed by: Saastamoinen Anss Date: 2022-03-27 11:00:15 (+03:00) Location: Vaisala Ovi. Finland

The humidity sensor of the instrument was calibrated by comparing the instrument's humidity reading to a generated reference humidity reading. The reference humidity reading was calculated based on two-pressure humidity generation principle, using the measurement results of saturator pressure and temperature and calibration chamber pressure and temperature.

The temperature sensor of the instrument was calibrated by comparing the instrument's temperature readings to a reference thermometer. The pressure sensor of the instrument was calibrated by comparing the instrument's pressure readings to a reference barometer.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %. The measurement results are traceable to the international system of units (SI) through national metrology institutes (NIST USA, MIKES Finland, or equivalent) or via ISO/IEC 17025 accredited calibration laboratories.

Humidity and temperature calibration results, calibration date 2022-03-23

Reference Humidity [%rh]	Reference Temperature [°C]	Observed Humidity [%rh]	Observed Temperature [°C]	Humidity Error	Acceptance Limit
0.1	22.52	0.0	22.52	-0.1	+3.0
15.0	22.52	14.6	22.53	-0.4	+3.0
33.0	22.52	32.6	22.53	-0.4	+3.0
54.0	22.53	53.8	22.53	-0.2	+3.0
75.1	22.53	75.1	22.53	0.0	+3.0
95.3	22.54	96.5	22.53	1.2	±5.0

	Reference Temperature	Observed Temperature	Temperature Error	Acceptance Limit
1	[0°]	[°C]	[°C]	[00]
	22.53	22.53	0.00	±0.30

Ambient conditions in humidity and temperature calibrationHumidity [%rh]Temperature [°C]Pressure [hPa]19 ±425 ±21019 ±20

Reference equipment used in Humidity and temperature calibration

Туре	Identity Number	Certificate Number	Calibration date	Calibration due date
PTU307	19542	K008-E05564	2021-11-08	2022-11-30
PXI Pt-100 sensor	19923	K008-E06355	2021-12-12	2022-12-31
DPS823B	19906	K008-E05706	2021-11-15	2022-11-30
PXI Pt-100 sensor	19921	K008-E06357	2021-12-12	2022-12-31
PXIe-4080	19920	E06358	2021-12-13	2022-12-31

Pressure calibration results, calibration date 2022-03-16

Reference Pressure	Observed Pressure	Pressure Error	Acceptance limit
[hPa]	[hPa]	[hPa]	[hPa]
601.3	601.3	0.0	±0.5
800.6	800.6	0.0	±0.5
901.0	901.0	0.0	±0.5
1080.8	1080.8	0.0	±0.5

Reference equipment used in pressure calibration

Type 10	lentity Number	Certificate Number	Calibration date	Calibration due date
Fluke RPM4 1	7966	E06297	2021-12-09	2022-06

Calibration uncertainty (k=2, ~95% confidence level):

 Humidity
 ±0.6 %rh @ 0...40 %rh, ±1.0 %rh @ 40...95 %rh

 Temperature
 ±0.10 °C

 Pressure
 ±0.3 hPa

Vaisala Oyj | PO Box 26, FI-00421 Helsinki, Finland Phone +358 9 894 91 | Fax +358 9 8949 2227 Email helpdesk@vaisala.com | www.vaisala.com Domicile Vantaa, Finland | VAT FI01244162 | Business ID 0124416-2

Test report no. HEL221270093

TEST REPORT

Product familyWXT530 seriesProduct typeWXT536Order code6B1B2A2D1A1BSerial numberU1270033ManufacturerVaisala Oyj, FinlandTest date27 March 2022

This test report certifies that the product was thoroughly tested and inspected, and found to meet its published test limits when it was shipped from Vaisala.

Test results

Test	Result	Lower limit	Upper limit	Unit
Rain response	381	345	575	mV
Zero wind speed	0	0	0.4	m/s
Pressure difference	0.06	-1	1	hPa
Temperature difference	-0.81	-2	. 2	°C
Humidity difference	-1.43	-10	10	%RH
Heating current	0.74	0.6	0.8	A
Current (service port)	4.02	0.5	6	mA
Communication (service port)	pass	PASS	PASS	-
Current (main port)	3.41	0.5	6	mA
Communication (main port)	pass	PASS	PASS	-

Ambient conditions / Humidity 8.67 ±5 %RH, Temperature 22.09 ±1 °C, Pressure 1022.06 ±1 hPa.

Signature Technician

Vaisala Oyj | PO Box 26, FI-00421 Helsinki, Finland Phone +358 9 894 91 | Fax +358 9 8949 2227 Email helpdesk@vaisala.com | www.vaisala.com Domicile Vantaa, Finland | VAT FI01244162 | Business ID 0124416-2 Appendix C: Locations of MI EGLE Monitors Relative to the Former State Fairgrounds

