#### TRANSMITTAL LETTER

DATE: November 1, 2023

TO: City of Detroit

**Environmental Affairs** 

Buildings, Safety Engineering and Environmental Department

2 Woodward Avenue Detroit, Michigan 48226 Phone: 313.471-5110

Attn: Mr. Hossam N. Hassanien, PG, CPG Email: hassanienh@detroitmi.gov

RE: Former State Fair Grounds Ambient Monitoring First Construction Phase Report

PROJECT # 2142-7261-00

#### WE ARE TRANSMITTING HEREWITH THE FOLLOWING MATERIAL

| Date      | Copies | Description                                                                  |
|-----------|--------|------------------------------------------------------------------------------|
| 11/1/2023 | 1      | Former State Fair Grounds Ambient Monitoring First Construction Phase Report |
|           |        |                                                                              |

#### **REMARKS**

Please find attached a copy of the Former State Fair Grounds Ambient Monitoring First Construction Phase Report t for your use. The Montrose Air Quality Services report is included. If you have any questions, you may contact Mr. Dor'Mario Brown at 248.727.7083. Thank you.

#### **DLZ REPRESENTATIVE**

Dor'Mario Brown **Division Manager** 



August 10, 2023

Ms. Donna Rice City of Detroit **Detroit Building Authority** 500 Griswold, Suite 200 Detroit, Michigan 48226

RE: Ambient Air Quality Monitoring – 1st Construction Phase Ambient Monitoring Report

Proposed Department of Transportation (DDOT) Transit Center

Detroit, Michigan

Project No. 2142726100

Dear Ms. Rice:

The City of Detroit Department of Transportation (DDOT) recently completed a property transaction for a new Transit Center to be constructed on Parcel D of the former Michigan State Fairgrounds located at 8 Mile Road and Woodward Avenue in Detroit, Michigan. The City contracted DLZ Michigan, Inc. to conduct ambient air quality monitoring at the proposed Detroit Department of Transportation (DDOT) Transit Center site (Site).

The monitoring program consists of siting localized monitors at an upwind and downwind locations to measure concentrations of particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>), nitrogen oxide (NOx, as NO<sub>2</sub>), and volatile organic compounds (VOCs), and evaluate air quality from the Site during three (3) distinct phases:

- Pre-development baseline period
- Construction phase
- Post-construction facility operation

Pre-Development Baseline Period (Report Submitted on October 17) 1st Construction Phase Monitoring (Completed)

DLZ's 1st Construction Phase Monitoring report, dated August 7, 2023, presented ambient concentrations during the construction activities at the Site. Construction phase period included monitoring data collected by Montrose Air Quality Services, LLC (MAQS), from July 15 through July 24, 2023, and was supplemented with monitoring data collected by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) from July 15, 2023, through July 24, 2023. The purpose of the Construction Monitoring Report was to compare the data collected at the Site during the construction activities to corresponding NAAQS and baseline reference concentrations. if measured pollutant concentrations exceeded, the construction contractor would be alerted to investigate on-site construction activities at the time that the elevated concentration was recorded and determine if additional mitigation measures were needed to reduce pollutant concentrations to below the baseline reference concentration.

607 Shelby St., Ste. 650, Detroit, Michigan 48226 | OFFICE 313.961.4040 | ONLINE WWW.DLZ.COM

DLZ-DDOT Transit Center at Former Michigan State Fairgrounds

Report ID: 027AA-016697-RT-68 Construction Monitoring

Page 2 of 4

#### 1st Phase Construction Monitoring

The enclosed report presents the results of the 1st Construction Phase Monitoring event that was conducted for the two (2)-weeks period of July 15, 2023, through July 24, 2023. The goal of Construction Phase Ambient monitoring is to collect concentration data of target air pollutants during the on-site activities consisting of concrete work, steel construction, roofing, interior buildout, electrical work, and plumbing to assess whether additional mitigation efforts are warranted to reduce pollutant concentrations to below baseline levels or NAAQS.

The enclosed 1st Phase Construction Ambient Monitoring Report describes the monitoring program, objectives, Site overview, monitor locations and equipment, monitoring results, and an overview of data quality assurance.

The report includes monitoring data from two (2) available sources, including:

- Two (2) Site monitors operated by MAQS for DLZ during the monitoring period (July 15, 2023 through July 24, 2023) and identified as Unit 1838 (upwind location) and Unit 1839 (downwind location).
- Nearby off-site monitors operated by Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the MAQS monitoring period.

As part of this air monitoring program, MAQS collected two (2) weeks of air monitoring data for NOx (as  $NO_2$ ),  $PM_{10}$  and  $PM_{2.5}$ , and VOCs at two (2) monitors, along with prevailing wind directions and speeds (vectors).

The City anticipates that development of the proposed DDOT Transit Center may result in direct and fugitive air emissions from construction activities, as well as future operations. Sources of NOx and VOC emissions related to construction may include vehicular traffic and diesel engines (over-the-road and non-road heavy duty construction). Potential emissions of PM<sub>10</sub> and PM<sub>2.5</sub> related to construction may include fugitive dust associated with vehicular traffic, soil handling, material storage piles, concrete batching, and abrasives blasting.

The monitors, designated as Unit 1838 and Unit 1839, were located on opposite sides of the Site and both stations are configured to collect pollutant and meteorological data. The upwind monitor (Unit 1838) measures pollutant concentrations that have not blown across the Site and should be free from potential impacts of on-site development activity and is representative of local area background concentrations.



#### Results of 1st Phase Construction Monitoring

As presented below and in the enclosed report, for monitoring conducted July 15 through July 24, 2023, concentrations of  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_x$  (as  $NO_2$ ) and VOC from the on-site monitors are establishing their baseline concentrations, as summarized in Table 2.  $NO_x$  (as  $NO_2$ ) concentrations are less than the 1-hour NAAQS of 100 ppb for  $NO_2$ .<sup>1</sup> Monitored concentrations of  $PM_{10}$ ,  $PM_{2.5}$  are also less than the 24-hour NAAQS of 150  $\mu g/m^3$  for  $PM_{10}$ , 35  $\mu g/m^3$  for  $PM_{2.5}$ .

Table 2 – Summary of Air Monitoring from July 15 through July 24, 2023

| Pollutant         | 1st phase<br>Maximum<br>Concentration | 1 st Phase<br>Max<br>Monitor | Date of<br>Maximum<br>Concentration | Baseline<br>Max<br>Concentrati<br>on | Baseline<br>Max<br>Monitor | NAAQS           | Units |
|-------------------|---------------------------------------|------------------------------|-------------------------------------|--------------------------------------|----------------------------|-----------------|-------|
| PM <sub>10</sub>  | 42                                    | Unit 1838                    | 7-20-2023                           | 17                                   | Unit 1839                  | 150             | μg/m3 |
| PM <sub>2.5</sub> | 9                                     | Unit 1839                    | 7-20-2023                           | 4                                    | Unit 1839                  | 35              | μg/m3 |
| NO <sub>2</sub>   | 22                                    | Unit 1839                    | 7-22-2023                           | 22                                   | Unit 1838                  | 100             | ppb   |
| VOC               | 0.03                                  | Unit 1838                    | 7-22-2023&                          | 0.03                                 | Unit 1839                  | NA <sup>2</sup> | ppm   |
|                   |                                       |                              | 7-19-2023                           |                                      |                            |                 |       |

<sup>&</sup>lt;sup>1</sup> Construction Phase Monitoring report included two (2) Site monitors operated by MAQS for DLZ from July 15, 2023, through July 24, 2023, and identified as Unit 1838 (upwind location) and Unit 1839 (downwind location), as well as monitoring data provided by Michigan Department of Environment, Great Lakes, and Energy (EGLE).

In summary, the data collected from the site during the first construction-phase do not exceed any NAAQS. However, during this monitoring period, there were periods where ambient concentrations of PM2.5 and PM10 were unusually elevated. These elevated PM concentrations are attributed in part to smoke and particulate matter transported by winds from numerous Canadian wildfires over the entire state of Michigan, including the greater Detroit metropolitan area. To conclude the data collected are not indicative of a threat to public health.

We appreciate this opportunity to be of service to you. If you have questions or need additional information, please contact us at 248-727-7083.

Sincerely,

DLZ Michigan, Inc.

Dor'Mario Brown Division Manager

<sup>&</sup>lt;sup>2</sup> NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NOx and VOCs in certain ambient conditions (typically hot, sunny weather)

## INNOVATIVE IDEAS EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE

DLZ-DDOT Transit Center at Former Michigan State Fairgrounds

Report ID: 027AA-016697-RT-68 Construction Monitoring

Page 4 of 4

DB

| Atta   | chm    | ents  |
|--------|--------|-------|
| / tttu | C11111 | CIICO |

<sup>1</sup> NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NOx and VOCs in certain ambient conditions (typically hot, sunny weather).

## 1ST CONSTRUCTION PHASE AMBIENT MONITORING REPORT DDOT TRANSIT CENTER AT FORMER MICHIGAN STATE FAIRGROUNDS DETROIT, MICHIGAN

Prepared For: **DLZ Michigan, Inc.** 607 Shelby St. Suite 650 Detroit, MI 48226

Prepared By:

**Montrose Air Quality Services, LLC** 

45 U.S. 46, Suite 601 4949 Fernlee Avenue Pine Brook, NJ 07058 Royal Oak, MI 48073

Document Number: **027AA-016697-RT-68** 

Monitoring Period: July 15 through July 24, 2022

Submittal Date: August 7, 2023





## **Table of Contents**

| PROJECT OVERVIEW                                                                                                                | . 2                      |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Background                                                                                                                      | . 2<br>. 2<br>. 3<br>. 4 |
| Discussion of Results                                                                                                           | . 6                      |
| POLLUTANT DATA COLLECTED                                                                                                        | .7                       |
| Figure 2 – PM <sub>10</sub> Data<br>Figure 3 – PM <sub>2.5</sub> Data<br>Figure 4 – NO <sub>2</sub> Data<br>Figure 5 – VOC Data | . 8<br>. 9               |
| METEOROLOGICAL DATA COLLECTED                                                                                                   |                          |
| Figure 6: Wind Rose From 1839 Monitor                                                                                           | 11<br>12                 |
| DATA QUALITY ASSURANCE/QUALITY CONTROL                                                                                          | 13                       |
| Quality Assurance/Quality Control                                                                                               | 13                       |
| CONCLUSION                                                                                                                      | 14                       |
| SIGNATURE PAGE                                                                                                                  | 15                       |
| APPENDICES                                                                                                                      | 16                       |
| Appendix A: Quality Assurance Logs                                                                                              | 17                       |



## **Project Overview**

#### **Background**

DLZ Michigan, Inc. (DLZ) has retained Montrose Air Quality Services, LLC (Montrose) to conduct an ambient air monitoring program in support of the proposed Detroit Department of Transportation (DDOT) Transit Center on Parcel D of the former Michigan State Fairgrounds located at 8 Mile Road and Woodward Avenue in Detroit, Michigan. The program is conducted to monitor for a mixture of pollutants that may originate from construction activities as well as future Site operations including vehicular traffic, surface attrition, and dust emissions.

The previously-submitted Baseline Monitoring Report presented ambient monitoring data collected by Montrose prior to commencement of significant Site construction activities. The baseline monitoring period began July 8 and continued through July 22, 2022. The purpose of the Baseline Monitoring report is to characterize background ambient concentrations at the Site for each monitored pollutant. The pollutant concentrations recorded during the Baseline monitoring period were quite low. Consequently, Montrose selected the highest hourly concentration recorded for NO<sub>2</sub> and VOC during the baseline monitoring period to determine reference baseline values for NO<sub>2</sub> and VOC. Similarly, Montrose selected the highest 24-hour averaged concentration recorded for PM<sub>2.5</sub> and PM<sub>10</sub> during the baseline monitoring period to determine reference baseline values for PM<sub>2.5</sub> and PM<sub>10</sub>. It should be noted that the resulting baseline reference concentrations are far below National Ambient Air Quality Standards (NAAQS) established for NO<sub>2</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>.

Data collected at the Site during subsequent construction and post-construction monitoring periods are compared to corresponding NAAQS and baseline reference concentrations. For construction-phase monitoring periods, if measured pollutant concentrations exceeded the NAAQS concentration and corresponding meteorological (i.e., wind) data indicated the elevated concentration might have resulted from on-site activity (as opposed to transport from off-site sources), the construction contractor would be alerted to investigate on-site construction activities at the time that the elevated concentration was recorded and determine if additional mitigation measures were needed to reduce pollutant concentrations to below the baseline reference concentration.

This report also includes data reported from air pollutant monitors operated by Montrose and Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the monitoring period commencing on July 15 and concluding on July 24, 2023.

#### **Objectives**

The specific objectives are to continuously measure ambient concentrations of the following pollutant and meteorological parameters at two (2) locations proximate to the Site:

- Suspended particulate matter having an aerodynamic diameter  $\leq 10$  microns (PM<sub>10</sub>)
- Suspended particulate matter having an aerodynamic diameter  $\leq 2.5$  microns (PM<sub>2.5</sub>)
- Nitrogen Dioxide (NO<sub>2</sub>)
- Volatile Organic Compounds (VOC)
- Meteorological parameters measured at each monitoring location: wind speed, wind direction, temperature, relative humidity, and barometric pressure

#### **Potential Sources**

Sources of  $NO_x$  and VOC emissions related to construction include vehicular traffic and diesel engines (over-the-road and non-road heavy duty construction). Potential emissions of  $PM_{10}$  and  $PM_{2.5}$  related to construction may include fugitive dust associated with vehicular traffic, soil handling, material storage piles, concrete batching, and abrasives blasting.

#### **Operational Staff and Contacts**

#### **Facility Information**

Monitoring Proposed DDOT Transit Center Location: former Michigan State Fairgrounds

1120 W. State Fair Avenue

Detroit, MI 48203

## **Monitoring Program Coordinator**

DLZ Michigan, Inc. 607 Shelby St., Suite 650 Detroit, MI 48226

Project Contacts: Mr. Dor'Mario Brown

Role: Division Manager
Company: DLZ Michigan, Inc.
Telephone: 313-383-3216
Email: dbrown@dlz.com

#### **Monitoring Team Contact Information**

Testing Firm: Montrose Air Quality Services, LLC (Montrose)

Contact: David Cummings Darrin Barton
Title: District Manager Sr. Project Manager
Telephone: 201-213-2913 512-656-6455

Email: dcummings@montrose-env.com dabarton@montrose-env.com

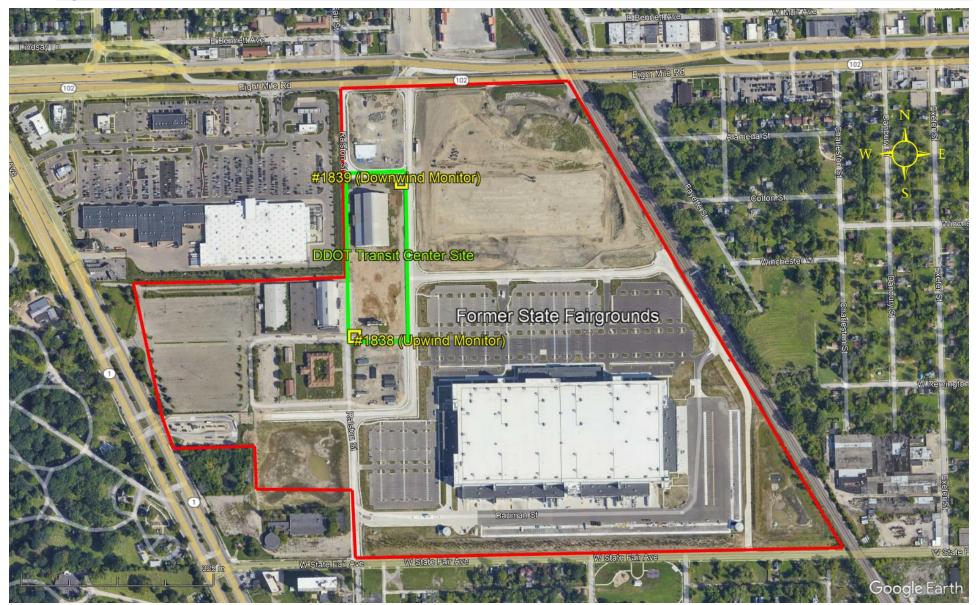
Kevin Ruggiero Jeffrey Peitzsch Sr. Project Manager Shop Coordinator 973-417-6487 313-213-4816

kruggiero@montrose-env.com jbpeitzsch@montrose-env.com

Linda Quigley

Senior Reporting QC Specialist

973-202-3312


lquigley@montrose-env.com

#### **Site Overview**

The air quality monitoring is performed at the site of the proposed DDOT Transit Center (former Michigan State Fairgrounds) property located at 1120 W State Fair Avenue in Detroit, MI. The existing site contains historically significant buildings: the 1924 Coliseum, the 1926 Dairy Cattle Building and the adjacent Agricultural Building. These structures may be retained or reused for the Transit Center. Other structures onsite in this area will be demolished and re-used to build a new DDOT Transit Center. Figure 1 presents an aerial view of the Site showing the DDOT Transit Center construction site and locations of the upwind (#1838) and downwind (#1839) air quality monitors.



Figure 1 – Monitor Locations at the DDOT Transit Center Construction Site





#### **Monitoring Equipment**

Air monitoring at the proposed DDOT Transit Center (former Michigan State Fairgrounds) is performed using an AQS-1 Urban Air Quality Monitor manufactured by Aeroqual. The compact size of the AQS-1 monitor makes it viable for a changing construction site where the monitor equipment may need to be removed and re-deployed during monitoring campaigns. Air monitoring is conducted for the parameters listed in Table 1.

**Table 1 - Pollutants Monitored** 

| Air Pollutant/Parameter Category                                                   | Principle of Operation                                 |
|------------------------------------------------------------------------------------|--------------------------------------------------------|
| PM <sub>10</sub> and PM <sub>2.5</sub>                                             | Laser Scattering interferometry with particle counting |
| $NO_2$                                                                             | Electrochemical                                        |
| VOC                                                                                | Photoionization                                        |
| Wind Speed, Wind Direction, Temperature,<br>Relative Humidity, Barometric Pressure | Sonic Anemometer and Various                           |

The AQS-1 integrates all measurement detectors, sample pump, flow controllers, signal processing, data acquisition and data transmission components within a compact, weatherproof enclosure. The AQS-1 features separate, dedicated sample air inlets configured specifically for the measurement of suspended particulate matter (i.e., PM<sub>10</sub> and PM<sub>2.5</sub>) and gaseous pollutants (i.e., NO<sub>2</sub> and VOC). An internal sample pump and flow controllers regulate and maintain stable, optimal flow rates of ambient air though each sample inlet. The sample air streams are directed to the various detection and measurement modules housed within the instrument. Each AQS monitor is powered in the field by deep-cycle batteries charged via solar photovoltaic panels and a battery charging regulator.

Particulate matter is continuously measured via laser scattering interferometry and particle counting methodology. This method is based on the physical principle of light scattering. Each single particle in the detection and measurement module is illuminated by a defined laser light beam; the coherent laser light is scattered by reflection off particles in the sample air stream within the detector. The scattering signal is detected at an angle of 90° by a photo diode within the detector module. In accordance with the Mie theory, each measured pulse height of the scattered light is directly proportional to the particle size. The pulses are classified in an electronic register of 32 different size channels.

NO<sub>2</sub> is continuously measured using an electrochemical sensor consisting of a working counter and reference electrode. NO<sub>2</sub> concentrations are detected and measured by oxidation or reduction reactions on an electrochemical sensor housed within a module containing a liquid electrolyte specific to NO<sub>2</sub>. The electrochemical sensor is subjected to a controlled, external electrical circuit. When NO<sub>2</sub> is present, a current proportional to the NO<sub>2</sub> concentration is produced.

VOC is continuously measured using a photoionization detector (PID). The PID sensor lamp produces photons having enough energy to ionize VOC molecules. The PID will only respond to molecules that have an ionization energy at or below the energy of the lamp; the PID used in the AQS-1 project employs a 10.6 electron-volt lamp. The ions produced from VOC compounds generate an electrical current that is measured as the output of the detector.



The meteorological monitors integrated with the AQS-1 are the Vaisala Model WXT536 Weather Transmitter. The meteorological monitors are mounted on a rigid support post elevated above the monitor enclosure cabinet, and are integrated with the data acquisition and data telemetry system housed within the PM2.5 monitor enclosure.

Measurement signals produced by each pollutant detector and the meteorological monitors are acquired by an internal mini-computer that processes, scales, averages and stores the measurement data. The internal computer is integrated with a wireless (cellular service) data modem that supports bidirectional communications.

Monitoring methods and activities employed in the monitoring program, including instrument calibration, operation, maintenance and quality control (QC) activities, were performed in accordance with the protocols and procedures contained in the approved <u>Ambient Air Test Plan 2022 Proposed DDOT Transit Center at Former Michigan State Fairgrounds</u> dated June 17, 2022.

#### **Discussion of Results**

The results of PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>2</sub>, and VOC monitoring data are presented in Figures 2 through 5 in this report. These figures also include data reported from nearby air monitoring stations maintained by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) for the same time period. The EGLE data contained in this report are from monitors that are routinely subjected to calibration and maintenance. It should be noted that, as of the date of this report, the EGLE data have not yet been processed through EGLE final quality assurance procedures. The monitor locations for EGLE Sites can be found on the map provided in Appendix C (*Locations of MI EGLE Monitors Relative to the Former State Fairgrounds*).

The Clean Air Act requires EPA to establish National Ambient Air Quality Standards (NAAQS) for certain air pollutants considered harmful to public health and the environment. Air pollutants for which NAAQS are established include NO<sub>2</sub>, PM<sub>2.5</sub> and PM<sub>10</sub>. NAAQS have not been established for VOCs. VOCs are considered precursors to the formation of ozone. Ozone is formed by photochemical reactions of NO<sub>x</sub> and VOCs in certain ambient conditions.

The graphed data shown in Figures 2 through 5 present measured concentrations for these pollutants collected during the monitoring period relative to the Baseline concentration and corresponding NAAQS.

The NAAQS for NO<sub>2</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub> were not exceeded during these monitoring periods.

Electronic records of all data and calibrations have been uploaded to the Montrose Data Server, where they will be archived for a period of at least three (3) years.



#### **Pollutant Data Collected**

#### Figure 2 –PM<sub>10</sub> Data

Figure 2 below presents the ambient  $PM_{10}$  measurement data collected at the DDOT Transit Center construction site on Parcel D of the former Michigan State Fairgrounds property during the monitoring period of 7/15/23 to 7/24/23. This graph is a plot of the  $PM_{10}$  measurement data as averaged over each 24-hour day (midnight-to-midnight) during the monitoring period. The  $PM_{10}$  daily averaging interval used for this monitoring program is consistent with the EPA 24-hour averaging interval used for NAAQS data reporting assessments. The primary and secondary  $PM_{10}$  NAAQS is equal to a daily averaged value of 150 micrograms per cubic meter ( $\mu g/m^3$ ) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents in Figure 2 below represents the 24-hour  $PM_{10}$  NAAQS of 150  $\mu g/m^3$ . The solid red line represents the baseline  $PM_{10}$  concentration of 15.7  $\mu g/m^3$  derived from the Baseline monitoring interval. The additional graphed data in Figure 2 presents 24-hour averaged  $PM_{10}$  data reported from each of the on-site monitors as well as corresponding data reported from the MI EGLE Dearborn continuous  $PM_{10}$  monitor, which is the closest state-operated  $PM_{10}$  monitor relative to the former Michigan State Fairgrounds property.

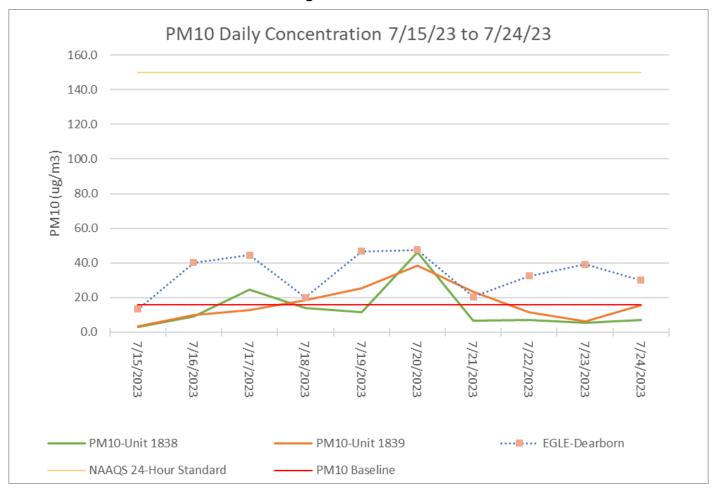



Figure 2: PM<sub>10</sub> Data



#### Figure 3 –PM<sub>2.5</sub> Data

Figure 3 below presents the ambient  $PM_{2.5}$  measurement data collected at the DDOT Transit Center construction site on Parcel D of the former Michigan State Fairgrounds property during the monitoring period starting on 7/15/23 and ending on 7/24/23. This graph is a plot of the  $PM_{2.5}$  measurement data as averaged over each 24-hour day (midnight-to-midnight) during the monitoring period. The  $PM_{2.5}$  daily averaging interval used for this monitoring program is consistent with the EPA 24-hour averaging interval used for NAAQS data reporting assessments. The primary and secondary  $PM_{2.5}$  NAAQS is equal to a daily averaged value of 35 micrograms per cubic meter ( $\mu g/m^3$ ) not to be exceeded more than once per year on average over 3 years.

The solid yellow line Figure 3 below represents the 24-hour PM<sub>2.5</sub> NAAQS of 35 μg/m³. The solid red line represents the baseline concentration of 3.8 μg/m³ derived from the Baseline monitoring interval. The additional graphed data in Figure 3 presents 24-hour averaged PM<sub>2.5</sub> data reported from each of the on-site monitors as well as corresponding data reported from the MI EGLE Dearborn and Detroit SW PM<sub>2.5</sub> monitors, which are the closest state-operated continuous PM2.5 monitors relative to the former Michigan State Fairgrounds property. (Note: The MI EGLE also operates a PM<sub>2.5</sub> monitor at the Oak Park monitoring site, which is located closer to the former Michigan State Fairgrounds property. The Oak Park PM<sub>2.5</sub> monitor collects filter-based PM<sub>2.5</sub> samples at 3-day intervals. Laboratory analytical results for filter-based PM samples are not available until approximately three months after the sample date. Consequently, the MI EGLE Oak Park PM<sub>2.5</sub> data are not available for inclusion in this report.)

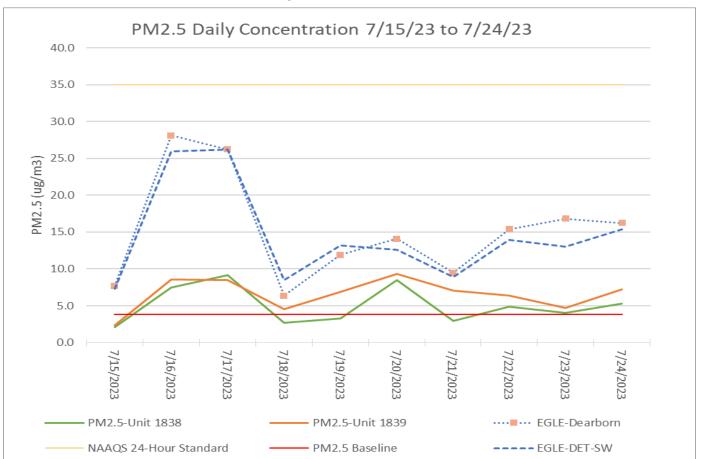



Figure 3: PM2.5 Data



#### Figure 4 – NO<sub>2</sub> Data

Figure 4 below presents the ambient NO<sub>2</sub> measurement data collected at the DDOT Transit Center construction site on Parcel D of the former Michigan State Fairgrounds property during the monitoring period starting on 7/15/23 and ending on 7/24/23. This graph is a plot of the NO<sub>2</sub> measurement data as averaged over one (1) hour intervals. This is consistent with the associated EPA primary NO<sub>2</sub> NAAQS: A 1-hour averaged value of 100 parts-per-billion (ppb) not to be exceeded more than once per year on average over 3 years.

The solid yellow line in Figure 4 represents the 1-hour NO<sub>2</sub> NAAQS of 100 ppb. The solid red line represents the baseline NO<sub>2</sub> concentration of 25.6 ppb derived from the Baseline monitoring interval. The additional graphed data in Figure 4 presents the 1-hour averaged data NO<sub>2</sub> data reported reported from each of the on-site monitors as well as corresponding data reported from the MI EGLE Detroit SW continuous NO<sub>2</sub> monitor, which is the closest state-operated NO<sub>2</sub> monitor relative to the former Michigan State Fairgrounds property.

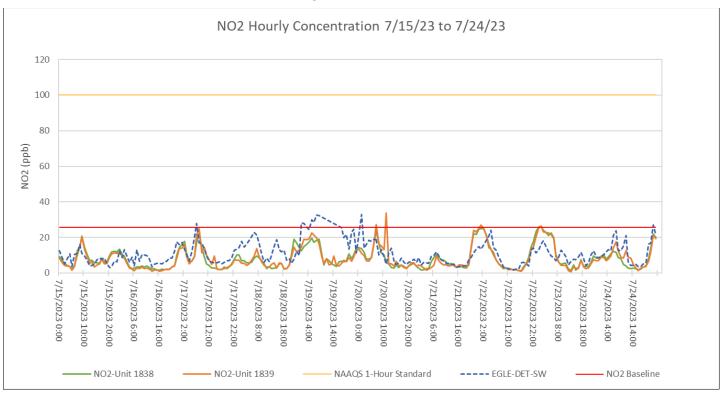



Figure 4: NO2 Data



#### Figure 5 - VOC Data

Figure 5 below presents the ambient VOC measurement data collected at the DDOT Transit Center construction site on Parcel D of the former Michigan State Fairgrounds property during the monitoring period starting on 7/15/23 and ending on 7/24/23. The US EPA does not promulgate a NAAQS for VOC.

The solid red line in Figure 5 represents the baseline hourly-averaged VOC concentration of 0.03 parts-permillion (ppm) derived from the Baseline monitoring interval. The additional graphed data in Figure 5 presents the 1-hour averaged data VOC data reported reported from each of the on-site monitors. MI EGLE does not monitor for VOC at any nearby MI EGLE monitoring sites. Consequently, no meaningful MI EGLE VOC data are available for comparison purposes.

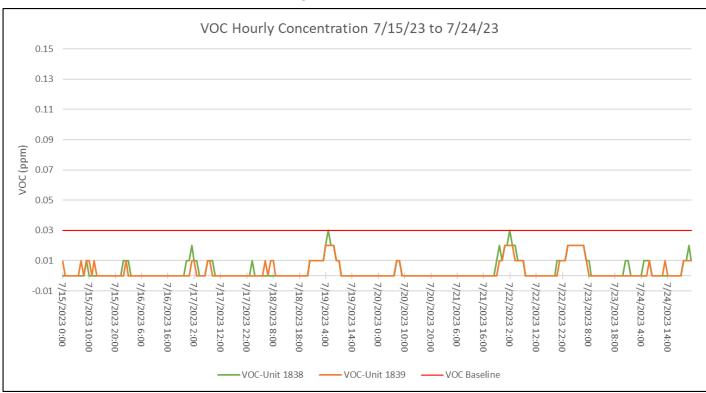



Figure 5: VOC Data



## **Meteorological Data Collected**

Figure 6 presents a wind rose derived from the wind speed and wind direction data collected from AQS-1 Upwind Monitor (S/N 1838) over the course of the monitoring period of 7/15/23 to 7/24/23. AQS-1 Monitor was deployed at a nominally upwind location at the DDOT Transit Center construction site, as depicted in Figure 1 in this report.

Figure 6: Wind Rose From AQS-1 (1838) Upwind Meteorological Monitor

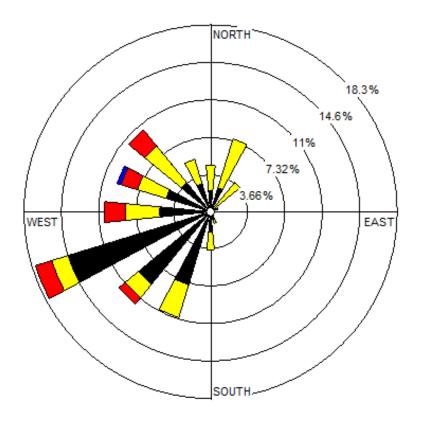
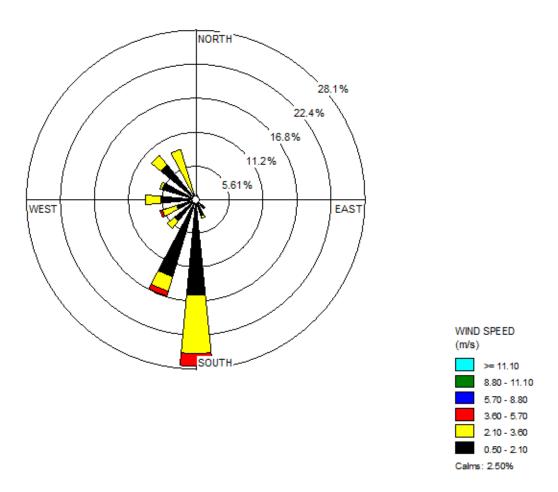








Figure 7 presents a wind rose derived from the wind speed and wind direction data collected from AQS-2 Downwind Monitor (S/N 1839) over the course of the monitoring period of 7/15/23 to 7/24/23. AQS-2 was deployed at a nominally downwind location at the DDOT Transit Center construction site, as depicted in Figure 1 in this report.

Figure 7 - Wind Rose From AQS-2 (1839) Downwind Meteorological Monitor



As is evident from the wind rose data, winds from the south/southwest were predominate during the monitoring period of 7/15/23 to 7/24/23 Wind speeds recorded were also predominantly light, being mostly within the range of 0.5 to 3.6 m/s.



## **Data Quality Assurance/Quality Control**

## **Quality Assurance/Quality Control**

Quality assurance is a general term for the procedures used to ensure that a particular measurement meets the quality requirements for its intended use. Quality control for monitoring instrumentation consists of calibrations, sample flow rate verifications, leak checks and verification of other monitor performance indicators.

Monitoring methods and activities employed in the monitoring program, including instrument calibration, operation, maintenance and quality control (QC) activities, were performed in accordance with the protocols and procedures contained in the approved <u>Ambient Air Test Plan 2022 Proposed DDOT Transit Center at Former Michigan State Fairgrounds</u> dated June 17, 2022.

All quality control data for the on-site monitors operated at the former Michigan State Fairgrounds property can be found in Appendix A to this report, entitled "Quality Assurance Logs". Certificates of traceability for the calibration standards and equipment used in support of quality assurance checks are presented in Appendix B to this report entitled "Calibration Certification Sheets".



## Conclusion

The ambient air quality monitoring data collected from the site during the first DDOT Transit Center construction-phase monitoring period of July 15 to July 24, 2023 do not exceed any NAAQS. During this monitoring period, the on-site monitors and nearby MI EGLE monitors all recorded periods during which ambient concentrations of PM<sub>2.5</sub> and PM<sub>10</sub> were unusually elevated. These elevated PM concentrations are attributed in part to smoke and particulate matter transported by winds from numerous Canadian wild fires over the entire state of Michigan, including the greater Detroit metropolitan area. On July 16, 2023 the MI EGLE issued an air quality alert for the entire state of Michigan due to smoke/haze conditions resulting from the Canadian wild fires. As seen in Figure 2 and Figure 3, both PM<sub>2.5</sub> and PM<sub>10</sub> concentrations were elevated during this time.



## **Signature Page**

This report was prepared and reviewed by the following individuals:

Linda Quigley Data Manager

Montrose Air Quality Services, LLC

Sil-auf

David Cummings

District Manager Montrose Air Quality Services, LLC



## **Appendiices**

Appendix A: Quality Assurance Logs



## AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

| Network:        | Cit             | y of Detroit Transit | Site:          | MTMS              | Lab   | Date:                     | 7/            | 12/23     |
|-----------------|-----------------|----------------------|----------------|-------------------|-------|---------------------------|---------------|-----------|
| Time Off-Lir    | Off-Line: 14:20 |                      | Time On-Line:  | 17:43             |       | Technician: Jeremy Levine |               | ny Levine |
|                 |                 |                      |                |                   |       | ı                         |               | 1         |
|                 |                 | Analyzer Model:      | Aeroqual AQS-1 | S/N:              | 1838  |                           | Last Cal:     | 5/31/23   |
| Calibration     | (               | Calibrator Model No: | Teledyne API   | S/N:              | 69    |                           | Cal. Date:    | 3/2/23    |
| Equipment Info. |                 | Zero Air Model No:   | Teledyne API   | S/N:              | n/a   |                           | Cert Date:    | n/a       |
|                 |                 | Gas Supplier:        | AirGas         | Cyl. Conc. (PPM): | 49.33 | Cyl. Pr                   | essure (PSIG) | 2,090     |

| VOC Sensor Module<br>Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |
|-------------------------------------------|------------------------------------|------------------------------|
| OFFSET                                    | 0.00                               |                              |
| GAIN                                      | 1.288                              |                              |

## "AS FOUND" (UNADJUSTED) TEST DATA

|                           | Calibrator                 | Flow and Test Gas         |                         | Observed VOC             |                     |                    |       |
|---------------------------|----------------------------|---------------------------|-------------------------|--------------------------|---------------------|--------------------|-------|
| Calibrator Gas Channel    |                            | Calibrator A              | Air Channel             | Known VOC                | Response from AQS-1 |                    | Error |
| Display Setting<br>(SLPM) | Actual Flow Rate<br>(SLPM) | Display Setting<br>(SLPM) | Actual Flow Rate (SLPM) | Input Gas<br>Conc. (PPM) | Response<br>(PPM)   | Std. Dev.<br>(PPM) | (∆%)  |
| OFF                       | OFF                        | 5.0000                    | 5.0155                  | 0.00                     | 0.00                | 0.00               | -     |
| 0.0500                    | 0.0501                     | 4.9493                    | 4.9750                  | 0.49                     | 0.51                | 0.00               | 4.1%  |
| 0.0500                    | 0.0502                     | 2.4493                    | 2.4684                  | 0.98                     | 0.94                | 0.00               | -4.1% |

#### "AS LEFT" (ADJUSTED) TEST DATA

|                           | Calibrator Flow and Test Gas Data |                           |                         |                          | Observed VOC      |                    |               |  |
|---------------------------|-----------------------------------|---------------------------|-------------------------|--------------------------|-------------------|--------------------|---------------|--|
| Calibrator                | Gas Channel                       | Calibrator A              | Air Channel             | Known VOC                | Response f        | rom AQS-1          | Error<br>(Δ%) |  |
| Display Setting<br>(SLPM) | Actual Flow Rate<br>(SLPM)        | Display Setting<br>(SLPM) | Actual Flow Rate (SLPM) | Input Gas<br>Conc. (PPM) | Response<br>(PPM) | Std. Dev.<br>(PPM) |               |  |
| OFF                       | OFF                               | 5.0000                    |                         | 0.00                     |                   |                    | -             |  |
|                           |                                   |                           |                         |                          |                   |                    |               |  |
|                           |                                   |                           |                         |                          |                   |                    |               |  |

## **NOTES:**

- 1. The VOC sensor zero response should be 0.0 ppm  $\pm$  0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than  $\pm$  0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be  $\pm 1$  ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm  $\pm$  1 ppm.

| nments: |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |

Technician: Jeremy Levine QA Review: Kenkeyster

#### **AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM**

| Calibration Data on This Form Are For: |             |              |               | Unadjusted Cal. | Х   |               | Adjusted Cal. |        |
|----------------------------------------|-------------|--------------|---------------|-----------------|-----|---------------|---------------|--------|
| Network:                               | City of Det | roit Transit | Site:         | MTMS I          | ₋ab | Date: 7/13/23 |               | 23     |
| Time Off-Line:                         |             | 7:20         | Time On-Line: |                 |     | Technician:   | Jeremy L      | .evine |

|             | Analyzer Model:       | Aeroqual AQS-1 | S/N:              | 1838    | Last Cal:                  | 5/31/23 |
|-------------|-----------------------|----------------|-------------------|---------|----------------------------|---------|
| Calibration | Calibrator Model No.: | Teledyne API   | S/N:              | 69      | Cal. Date:                 | 3/2/23  |
| Equipment   | Zero Air Model No.:   | Teledyne API   | S/N:              | n/a     | Cert Date:                 | n/a     |
| Info.       | Gas Supplier:         | Airgas         | Cyl. Cert. Date:  | 1/26/21 | Cyl. Pressure (PSIG)       | 1,400   |
|             | Gas Cylinder ID #:    | D068357        | Cyl. Conc. (PPM): | 30.95   | Gas Module Total Flow Rate | 130 mL  |

| Analyzer Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |
|-------------------------------|------------------------------------|------------------------------|
| OFFSET                        | -0.6                               | -0.6                         |
| GAIN                          | 1.236                              | 1.085                        |

|                              | Calibrator Flow and Test Gas Data    |                              |                            |                              | NO <sub>2</sub> Response |                    | Δ%                                |           |
|------------------------------|--------------------------------------|------------------------------|----------------------------|------------------------------|--------------------------|--------------------|-----------------------------------|-----------|
| Calibrator Ga                | as Channel                           | Calibrator                   | Air Channel                |                              | Observed f               | rom AQS-1          | (Observed                         |           |
| Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM)           | Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM) | Known NO₂ Gas<br>Conc. (PPB) | Response<br>(PPB)        | Std. Dev.<br>(PPB) | Response Vs.<br>Known Conc.)<br>3 | PASS/FAIL |
| 0.0452                       | 0.0453                               | 3.4548                       | 3.4790                     | 397.8                        | 453.0                    | 0.4                | 13.9%                             |           |
| 0.0484                       | 0.0486                               | 4.9516                       | 4.9738                     | 299.5                        | 341.8                    | 0.2                | 14.1%                             |           |
| 0.0323                       | 0.0324                               | 4.9677                       | 4.9942                     | 199.5                        | 227.5                    | 0.5                | 14.0%                             |           |
| 0.0161                       | 0.0163                               | 4.9839                       | 5.0097                     | 100.4                        | 112.7                    | 0.5                | 12.3%                             |           |
| OFF                          | OFF                                  | 5.0000                       | 5.0184                     | 0.0                          | 0.6                      | 0.2                | -                                 |           |
|                              | Linear Regression Analysis:          |                              |                            |                              |                          |                    |                                   |           |
| Slope:                       | Slope: 1.139936 Intercept: -0.228868 |                              |                            |                              | Corr. C                  | oefficient (r):    | 0.999                             | 986       |

## **NOTES:**

- 1. The NO2 sensor zero response should be 0.0 ppb  $\pm$  0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than  $\pm$  0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb  $\pm$  0.2 ppb.
- 3. The NO2 sensor SPAN response should be  $400 \text{ ppb} \pm 20 \text{ ppb}$  (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than  $\pm 20$  ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb  $\pm$  20 ppb.

Technician: Jeremy Levine

QA Review: Kenkeysters

#### **AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM**

| Calibration Data on This Form Are For: |              |               | Unadjusted Cal. |        |     | Adjusted Cal. | Х        |        |
|----------------------------------------|--------------|---------------|-----------------|--------|-----|---------------|----------|--------|
| Network:                               | City of Detr | oit (Transit) | Site:           | MTMS I | _ab | Date:         | 7/13/    | /23    |
| Time Off                               | -Line:       | 7:20          | Time On-Line:   | 13:53  | 3   | Technician:   | Jeremy l | Levine |

|             | Analyzer Model:       | Aeroqual AQS-1 | S/N:              | 1838    | Last Cal:                  | 5/31/23 |
|-------------|-----------------------|----------------|-------------------|---------|----------------------------|---------|
| Calibration | Calibrator Model No.: | Teledyne API   | S/N:              | 69      | Cal. Date:                 | 3/2/23  |
| Equipment   | Zero Air Model No.:   | Teledyne API   | S/N:              | n/a     | Cert Date:                 | n/a     |
| Info.       | Gas Supplier:         | Airgas         | Cyl. Cert. Date:  | 1/26/21 | Cyl. Pressure (PSIG)       | 1,400   |
|             | Gas Cylinder ID #:    | D068357        | Cyl. Conc. (PPM): | 30.95   | Gas Module Total Flow Rate | 130 mL  |

| Analyzer Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |
|-------------------------------|------------------------------------|------------------------------|
| OFFSET                        | -0.6                               | -0.6                         |
| GAIN                          | 1.236                              | 1.085                        |

|                              | Calibrator Flow and Test Gas Data |                              |                            |                                          | NO <sub>2</sub> Response |                     | Δ%                                |           |
|------------------------------|-----------------------------------|------------------------------|----------------------------|------------------------------------------|--------------------------|---------------------|-----------------------------------|-----------|
| Calibrator Ga                | as Channel                        | Calibrator                   | Air Channel                |                                          | Observed f               | Observed from AQS-1 |                                   |           |
| Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM)        | Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM) | Known NO <sub>2</sub> Gas<br>Conc. (PPB) | Response<br>(PPB)        | Std. Dev.<br>(PPB)  | Response Vs.<br>Known Conc.)<br>3 | PASS/FAIL |
| 0.0452                       | 0.0453                            | 3.4548                       | 3.4796                     | 397.8                                    | 394.7                    | 0.4                 | -0.8%                             |           |
| 0.0484                       | 0.0485                            | 4.9516                       | 4.9799                     | 298.5                                    | 297.7                    | 0.4                 | -0.3%                             |           |
| 0.0323                       | 0.0324                            | 4.9677                       | 4.9936                     | 199.5                                    | 198.5                    | 0.3                 | -0.5%                             |           |
| 0.0161                       | 0.0163                            | 4.9839                       | 5.0085                     | 100.4                                    | 98.2                     | 1.0                 | -2.2%                             |           |
| OFF                          | OFF                               | 5.0000                       | 5.0188                     | 0.0                                      | 1.1                      | 0.2                 | -                                 |           |
|                              | Linear Regression Analysis:       |                              |                            |                                          |                          |                     |                                   |           |
| Slope:                       | 0.992                             | 2942                         | Intercept:                 | 0.206197                                 | Corr. C                  | oefficient (r):     | 0.999                             | 973       |

## **NOTES:**

- 1. The NO2 sensor zero response should be 0.0 ppb  $\pm$  0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than  $\pm$  0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb  $\pm$  0.2 ppb.
- 3. The NO2 sensor SPAN response should be  $400 \text{ ppb} \pm 20 \text{ ppb}$  (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than  $\pm 20$  ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb  $\pm$  20 ppb.

Technician: Jeremy Levine

QA Review: Kenkeysters

## **AEROQUAL AQS-1 FLOW and LEAK CHECK FORM**

| QC Checks are: X                   | Scheduled                              | Uı                      | nschedule | ed (If unsch                       | neduled, explain r                          | reason why in | ı "Comments" Section)                                |  |
|------------------------------------|----------------------------------------|-------------------------|-----------|------------------------------------|---------------------------------------------|---------------|------------------------------------------------------|--|
| Network: City of De                | etroit (Transit)                       | Site: Fa                | airground | s                                  | Date of Checks                              | <b>5:</b>     | 7/14/2023                                            |  |
| Operator: Jeremy L                 | rator: Jeremy Levine, Jeff Peitzsch    |                         |           | Time Off-Line:                     |                                             | EST           |                                                      |  |
| AEROQUAL QS-1 S/N:1838             |                                        |                         |           |                                    | Time On-Line:                               |               | EST                                                  |  |
| Reference Standards:               |                                        |                         |           |                                    |                                             |               |                                                      |  |
| Flow Standard: Aeroqual            | Rotometer                              | SA                      | /N#       | n/a                                |                                             | Cert Date:    | n/a                                                  |  |
|                                    | s found" checks.<br>ceptability limits |                         |           |                                    | -                                           |               |                                                      |  |
| AQS-1 Expected<br>Flow Rate<br>(A) | Flow Rate Flow Rate                    |                         |           |                                    | Profiler<br>Flow Rate<br>Error LPM<br>(A-B) |               | Profiler<br>Flow Rate<br>Error Δ%<br>(A-B) ÷ A x 100 |  |
| 1.0 LPM                            |                                        | 1.00 LI                 | РМ        |                                    | 0.00                                        |               | 0.0%                                                 |  |
| Flow Check Procedure Link A        | cceptability Lim<br>1.0 LPM ± 0.0      |                         | •         |                                    | article Profiler<br>and 1.05 LPM)           |               | is                                                   |  |
| LEAK CHECK DATA:                   |                                        |                         |           |                                    |                                             |               |                                                      |  |
| PROFILER LEAKAG                    | E RATE:                                |                         |           | 30                                 | seconds                                     | (Must be >10  | ) sec for 10 kPa pressure change)                    |  |
| Leak Check Procedure Link          |                                        |                         |           |                                    |                                             |               |                                                      |  |
| AS LEFT CHECK DATA                 |                                        |                         |           |                                    |                                             |               |                                                      |  |
| AQS-1 Expected Flow Rate (A)       | Flov                                   | erence<br>v Rate<br>(B) |           | Profiler<br>Flow Rate<br>Error LPM |                                             |               | Profiler<br>Flow Rate<br>Error Δ%                    |  |
| LPM                                |                                        | LPM                     |           |                                    |                                             |               |                                                      |  |
| LEAK CHECK DATA:                   |                                        |                         |           |                                    |                                             |               |                                                      |  |
| PROFILER LEAKAG                    | E RATE:                                |                         |           |                                    | seconds                                     | (Must be > 1  | 0 sec for 10 kPa pressure change                     |  |
|                                    |                                        |                         |           |                                    |                                             |               |                                                      |  |
| Comments:                          |                                        |                         |           |                                    |                                             |               |                                                      |  |

Technician: Jeremy Levine

QA Review: Kenkeyster

## AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

| Network: C     | ity of Detroit Transit | Site:         | MTMS Lab | Date:       | 7/26/23       |
|----------------|------------------------|---------------|----------|-------------|---------------|
| Time Off-Line: | 20:27                  | Time On-Line: | 22:15    | Technician: | Jeremy Levine |
|                |                        |               |          |             |               |

|                          | Analyzer Model:      | Aeroqual AQS-1 | S/N:              | 1838  | Last Cal:            | 7/12/23 |
|--------------------------|----------------------|----------------|-------------------|-------|----------------------|---------|
| Calibration<br>Equipment | Calibrator Model No: | Teledyne API   | S/N:              | 69    | Cal. Date:           | 3/2/23  |
| Info.                    | Zero Air Model No:   | Teledyne API   | S/N:              | n/a   | Cert Date:           | n/a     |
|                          | Gas Supplier:        | AirGas         | Cyl. Conc. (PPM): | 49.33 | Cyl. Pressure (PSIG) | 2,090   |

| VOC Sensor Module<br>Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |  |
|-------------------------------------------|------------------------------------|------------------------------|--|
| OFFSET                                    | 0.00                               | 0.00                         |  |
| GAIN                                      | 1.288                              | 1.345                        |  |

## "AS FOUND" (UNADJUSTED) TEST DATA

|                           | Calibrator Flow and Test Gas Data |                           |                                                      |                          |                   |                    |       |  |
|---------------------------|-----------------------------------|---------------------------|------------------------------------------------------|--------------------------|-------------------|--------------------|-------|--|
| Calibrator (              | Gas Channel                       | Calibrator A              | Calibrator Air Channel Known VOC Response from AQS-1 |                          | Error             |                    |       |  |
| Display Setting<br>(SLPM) | Actual Flow Rate<br>(SLPM)        | Display Setting<br>(SLPM) | Actual Flow Rate (SLPM)                              | Input Gas<br>Conc. (PPM) | Response<br>(PPM) | Std. Dev.<br>(PPM) | (∆%)  |  |
| OFF                       | OFF                               | 5.0000                    | 5.0148                                               | 0.00                     | 0.00              | 0.00               | -     |  |
| 0.0500                    | 0.0501                            | 4.9493                    | 4.9746                                               | 0.49                     | 0.48              | 0.00               | -2.0% |  |
| 0.0500                    | 0.0502                            | 2.4493                    | 2.4703                                               | 0.98                     | 0.90              | 0.00               | -8.2% |  |

#### "AS LEFT" (ADJUSTED) TEST DATA

| ,                         | Calibrator                 | Flow and Test Gas         | Calibrator Flow and Test Gas Data |                          |                      |                    |               |  |
|---------------------------|----------------------------|---------------------------|-----------------------------------|--------------------------|----------------------|--------------------|---------------|--|
| Calibrator                | Gas Channel                | Calibrator A              | Air Channel                       | Known VOC                | Observ<br>Response f |                    | Error<br>(Δ%) |  |
| Display Setting<br>(SLPM) | Actual Flow Rate<br>(SLPM) | Display Setting<br>(SLPM) | Actual Flow Rate (SLPM)           | Input Gas<br>Conc. (PPM) | Response<br>(PPM)    | Std. Dev.<br>(PPM) |               |  |
| OFF                       | OFF                        | 5.0000                    | 5.0174                            | 0.00                     | 0.00                 | 0.0                | -             |  |
| 0.0500                    | 0.0502                     | 4.9493                    | 4.9762                            | 0.49                     | 0.51                 | 0.0                | 4.1%          |  |
| 0.0500                    | 0.0502                     | 2.4493                    | 2.4702                            | 0.98                     | 0.94                 | 0.0                | -4.1%         |  |

## NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm  $\pm$  0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than  $\pm$  0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be  $\pm 1$  ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than  $\pm 1$  ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm  $\pm$  1 ppm.

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

Technician: Jeremy Levine

QA Review:

#### **AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM**

| Calibration Data on This Form Are For: |             |               | Unadjusted Cal. | Х      |             | Adjusted Cal. |        |  |
|----------------------------------------|-------------|---------------|-----------------|--------|-------------|---------------|--------|--|
| Network:                               | City of Det | roit Transit  | Site:           | MTMS I | ₋ab         | Date:         |        |  |
| Time Off-Line: 15:56                   |             | Time On-Line: |                 |        | Technician: | Jeremy L      | .evine |  |

|             | Analyzer Model:       | Aeroqual AQS-1 | S/N:              | 1838    | Last Cal:                  | 7/13/23 |
|-------------|-----------------------|----------------|-------------------|---------|----------------------------|---------|
| Calibration | Calibrator Model No.: | Teledyne API   | S/N:              | 69      | Cal. Date:                 | 3/2/23  |
| Equipment   | Zero Air Model No.:   | Teledyne API   | S/N:              | n/a     | Cert Date:                 | n/a     |
| Info.       | Gas Supplier:         | Airgas         | Cyl. Cert. Date:  | 1/26/21 | Cyl. Pressure (PSIG)       | 1,390   |
|             | Gas Cylinder ID #:    | D068357        | Cyl. Conc. (PPM): | 30.95   | Gas Module Total Flow Rate | 130 mL  |

| Analyzer Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |
|-------------------------------|------------------------------------|------------------------------|
| OFFSET                        | -0.6                               |                              |
| GAIN                          | 1.085                              |                              |

|                              | Calibrato                   | or Flow and T                                        | est Gas Data               |                              | NO <sub>2</sub> Response |                    | Δ%                                |           |
|------------------------------|-----------------------------|------------------------------------------------------|----------------------------|------------------------------|--------------------------|--------------------|-----------------------------------|-----------|
| Calibrator Ga                | as Channel                  | el Calibrator Air Channel <u>Observed from AQS-1</u> |                            | (Observed                    |                          |                    |                                   |           |
| Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM)  | Display<br>Setting<br>(SLPM)                         | Actual Flow<br>Rate (SLPM) | Known NO₂ Gas<br>Conc. (PPB) | Response<br>(PPB)        | Std. Dev.<br>(PPB) | Response Vs.<br>Known Conc.)<br>3 | PASS/FAIL |
| 0.0452                       | 0.0453                      | 3.4548                                               | 3.4786                     | 397.9                        | 383.1                    | 0.3                | -3.7%                             |           |
| 0.0484                       | 0.0486                      | 4.9516                                               | 4.9791                     | 299.2                        | 287.4                    | 0.3                | -3.9%                             |           |
| 0.0323                       | 0.0324                      | 4.9677                                               | 4.9929                     | 199.5                        | 190.5                    | 0.2                | -4.5%                             |           |
| 0.0161                       | 0.0163                      | 4.9839                                               | 5.0123                     | 100.3                        | 95.1                     | 0.6                | -5.2%                             |           |
| OFF                          | OFF                         | 5.0000                                               | 5.0186                     | 0.0                          | 1.2                      | 0.4                | -                                 |           |
|                              | Linear Regression Analysis: |                                                      |                            |                              |                          |                    |                                   |           |
| Slope:                       | 0.96                        | 1179                                                 | Intercept:                 | -0.179854                    | Corr. C                  | oefficient (r):    | 0.999                             | 973       |

## **NOTES:**

- 1. The NO2 sensor zero response should be 0.0 ppb  $\pm$  0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than  $\pm$  0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb  $\pm$  0.2 ppb.
- 3. The NO2 sensor SPAN response should be  $400 \text{ ppb} \pm 20 \text{ ppb}$  (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than  $\pm 20$  ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb  $\pm$  20 ppb.

| Co | m | m | Δ | ntc  |  |
|----|---|---|---|------|--|
| LU |   |   | _ | 11.3 |  |

Technician: Jeremy Levine

QA Review: Kenkeysters

#### **AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM**

| Calibration Data on This Form Are For: |              |               | Unadjusted Cal. |        |             | Adjusted Cal. | Х      |     |
|----------------------------------------|--------------|---------------|-----------------|--------|-------------|---------------|--------|-----|
| Network:                               | City of Detr | oit (Transit) | Site:           | MTMS I | _ab         | Date: 7/13/2  |        | /23 |
| Time Off-Line: 7:20                    |              | Time On-Line: | 13:53           | 3      | Technician: | Jeremy l      | Levine |     |

|             | Analyzer Model:       | Aeroqual AQS-1 | S/N:              | 1838    | Last Cal:                  | 5/31/23 |
|-------------|-----------------------|----------------|-------------------|---------|----------------------------|---------|
| Calibration | Calibrator Model No.: | Teledyne API   | S/N:              | 69      | Cal. Date:                 | 3/2/23  |
| Equipment   | Zero Air Model No.:   | Teledyne API   | S/N:              | n/a     | Cert Date:                 | n/a     |
| Info.       | Gas Supplier:         | Airgas         | Cyl. Cert. Date:  | 1/26/21 | Cyl. Pressure (PSIG)       | 1,400   |
|             | Gas Cylinder ID #:    | D068357        | Cyl. Conc. (PPM): | 30.95   | Gas Module Total Flow Rate | 130 mL  |

| Analyzer Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |  |  |
|-------------------------------|------------------------------------|------------------------------|--|--|
| OFFSET                        | -0.6                               | -0.6                         |  |  |
| GAIN                          | 1.236                              | 1.085                        |  |  |

|                              | Calibrato                   | or Flow and T                                          | est Gas Data               |                                          | NO <sub>2</sub> Re | sponse             | Δ%                                |           |
|------------------------------|-----------------------------|--------------------------------------------------------|----------------------------|------------------------------------------|--------------------|--------------------|-----------------------------------|-----------|
| Calibrator Ga                | as Channel                  | nnel Calibrator Air Channel <u>Observed from AQS-1</u> |                            | (Observed                                |                    |                    |                                   |           |
| Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM)  | Display<br>Setting<br>(SLPM)                           | Actual Flow<br>Rate (SLPM) | Known NO <sub>2</sub> Gas<br>Conc. (PPB) | Response<br>(PPB)  | Std. Dev.<br>(PPB) | Response Vs.<br>Known Conc.)<br>3 | PASS/FAIL |
| 0.0452                       | 0.0453                      | 3.4548                                                 | 3.4796                     | 397.8                                    | 394.7              | 0.4                | -0.8%                             |           |
| 0.0484                       | 0.0485                      | 4.9516                                                 | 4.9799                     | 298.5                                    | 297.7              | 0.4                | -0.3%                             |           |
| 0.0323                       | 0.0324                      | 4.9677                                                 | 4.9936                     | 199.5                                    | 198.5              | 0.3                | -0.5%                             |           |
| 0.0161                       | 0.0163                      | 4.9839                                                 | 5.0085                     | 100.4                                    | 98.2               | 1.0                | -2.2%                             |           |
| OFF                          | OFF                         | 5.0000                                                 | 5.0188                     | 0.0                                      | 1.1                | 0.2                | -                                 |           |
|                              | Linear Regression Analysis: |                                                        |                            |                                          |                    |                    |                                   |           |
| Slope:                       | 0.992                       | 2942                                                   | Intercept:                 | 0.206197                                 | Corr. C            | oefficient (r):    | 0.999                             | 973       |

## **NOTES:**

- 1. The NO2 sensor zero response should be 0.0 ppb  $\pm$  0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than  $\pm$  0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb  $\pm$  0.2 ppb.
- 3. The NO2 sensor SPAN response should be  $400 \text{ ppb} \pm 20 \text{ ppb}$  (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than  $\pm 20$  ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb  $\pm$  20 ppb.

Technician: Jeremy Levine

QA Review: Kenkeysters

## **AEROQUAL AQS-1 FLOW and LEAK CHECK FORM**

| QC Checks are: X                   | Scheduled                              | Uı                      | nschedule | ed (If unsch | neduled, explain r                          | reason why in | ı "Comments" Section)                                |  |
|------------------------------------|----------------------------------------|-------------------------|-----------|--------------|---------------------------------------------|---------------|------------------------------------------------------|--|
| Network: City of De                | Site: Fairgrounds                      |                         |           |              | Date of Checks                              | <b>5:</b>     | 7/14/2023                                            |  |
| Operator: Jeremy L                 | Jeremy Levine, Jeff Peitzsch           |                         |           |              | Time Off-Line:                              |               | EST                                                  |  |
| AEROQUAL QS-1 S/N:1838             |                                        |                         |           |              | Time On-Line:                               |               | EST                                                  |  |
| Reference Standards:               |                                        |                         |           |              |                                             |               |                                                      |  |
| Flow Standard: Aeroqual            | Rotometer                              | SA                      | /N#       | n/a          |                                             | Cert Date:    | n/a                                                  |  |
|                                    | s found" checks.<br>ceptability limits |                         |           |              | -                                           |               |                                                      |  |
| AQS-1 Expected<br>Flow Rate<br>(A) | Flow Rate Flow                         |                         | Rate      |              | Profiler<br>Flow Rate<br>Error LPM<br>(A-B) |               | Profiler<br>Flow Rate<br>Error Δ%<br>(A-B) ÷ A x 100 |  |
| 1.0 LPM                            |                                        | 1.00 LI                 | РМ        | PM 0.00      |                                             |               | 0.0%                                                 |  |
| Flow Check Procedure Link A        | cceptability Lim<br>1.0 LPM ± 0.0      |                         | •         |              | article Profiler<br>and 1.05 LPM)           |               | is                                                   |  |
| LEAK CHECK DATA:                   |                                        |                         |           |              |                                             |               |                                                      |  |
| PROFILER LEAKAG                    | E RATE:                                |                         |           | 30           | seconds                                     | (Must be >10  | ) sec for 10 kPa pressure change)                    |  |
| Leak Check Procedure Link          |                                        |                         |           |              |                                             |               |                                                      |  |
| AS LEFT CHECK DATA                 |                                        |                         |           |              |                                             |               |                                                      |  |
| AQS-1 Expected Flow Rate (A)       | Flov                                   | erence<br>v Rate<br>(B) |           |              | Profiler<br>Flow Rate<br>Error LPM          |               | Profiler<br>Flow Rate<br>Error Δ%                    |  |
| LPM                                |                                        | Li                      | PM        |              |                                             |               |                                                      |  |
| LEAK CHECK DATA:                   |                                        |                         |           |              |                                             |               |                                                      |  |
| PROFILER LEAKAG                    | E RATE:                                |                         |           |              | seconds                                     | (Must be > 1  | 0 sec for 10 kPa pressure change                     |  |
|                                    |                                        |                         |           |              |                                             |               |                                                      |  |
| Comments:                          |                                        |                         |           |              |                                             |               |                                                      |  |

Technician: Jeremy Levine

QA Review: Kenkeyster

## AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

| Network:       | Network: City of Detroit (Transit) |                 | Site: MTMS Lab |           | Date:       | 7/12/23           |
|----------------|------------------------------------|-----------------|----------------|-----------|-------------|-------------------|
| Time Off-Line: |                                    | 14:20           | Time On-Line:  | 17:43     | Technician: | Jeremy Levine     |
|                |                                    | Analyzer Model: | Aerogual AQS-1 | S/N: 1839 | 1           | Last Cal: 5/31/23 |

|                          | Analyzer Model:      | Aeroqual AQS-1 | S/N:              | 1839  | Last Cal:            | 5/31/23 |
|--------------------------|----------------------|----------------|-------------------|-------|----------------------|---------|
| Calibration<br>Equipment | Calibrator Model No: | Teledyne API   | S/N:              | 69    | Cal. Date:           | 3/2/23  |
| Info.                    | Zero Air Model No:   | Teledyne API   | S/N:              | n/a   | Cert Date:           | n/a     |
|                          | Gas Supplier:        | AirGas         | Cyl. Conc. (PPM): | 49.33 | Cyl. Pressure (PSIG) | 2,090   |

| VOC Sensor Module<br>Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |  |  |
|-------------------------------------------|------------------------------------|------------------------------|--|--|
| OFFSET                                    | 0.00                               | 0.00                         |  |  |
| GAIN                                      | 1.298                              | 1.348                        |  |  |

## "AS FOUND" (UNADJUSTED) TEST DATA

| Calibrator Flow and Test Gas Data             |                            |                           |                            |                          |                   | Observed VOC       |       |
|-----------------------------------------------|----------------------------|---------------------------|----------------------------|--------------------------|-------------------|--------------------|-------|
| Calibrator Gas Channel Calibrator Air Channel |                            | Air Channel               | Known VOC                  | Response from AQS-1      |                   | Error              |       |
| Display Setting<br>(SLPM)                     | Actual Flow Rate<br>(SLPM) | Display Setting<br>(SLPM) | Actual Flow Rate<br>(SLPM) | Input Gas<br>Conc. (PPM) | Response<br>(PPM) | Std. Dev.<br>(PPM) | (∆%)  |
| OFF                                           | OFF                        | 5.0000                    | 5.0155                     | 0.00                     | 0.00              | 0.00               | -     |
| 0.0500                                        | 0.0501                     | 4.9493                    | 4.9750                     | 0.49                     | 0.49              | 0.00               | 0.0%  |
| 0.0500                                        | 0.0502                     | 2.4493                    | 2.4684                     | 0.98                     | 0.91              | 0.00               | -7.1% |

#### "AS LEFT" (ADJUSTED) TEST DATA

| Calibrator Flow and Test Gas Data |                            |                           |                         |                          |                     | Observed VOC       |       |
|-----------------------------------|----------------------------|---------------------------|-------------------------|--------------------------|---------------------|--------------------|-------|
| Calibrator Gas Channel Calib      |                            | Calibrator A              | Air Channel             | Known VOC                | Response from AQS-1 |                    | Error |
| Display Setting<br>(SLPM)         | Actual Flow Rate<br>(SLPM) | Display Setting<br>(SLPM) | Actual Flow Rate (SLPM) | Input Gas<br>Conc. (PPM) | Response<br>(PPM)   | Std. Dev.<br>(PPM) | (∆%)  |
| OFF                               | OFF                        | 5.0000                    | 5.0185                  | 0.00                     | 0.00                | 0.0                | -     |
| 0.0500                            | 0.0502                     | 4.9493                    | 4.9757                  | 0.49                     | 0.52                | 0.0                | 6.1%  |
| 0.0500                            | 0.0502                     | 2.4493                    | 2.4709                  | 0.98                     | 0.95                | 0.0                | -3.1% |

## NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm  $\pm$  0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than  $\pm$  0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be  $\pm 1$  ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than  $\pm 1$  ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm  $\pm$  1 ppm.

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

Technician: Jeremy Levine

QA Review:

## AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

| Calibration Data on This Form Are For: |              |               |               | Unadjusted Cal. | Х   |               | Adjusted Cal. |        |
|----------------------------------------|--------------|---------------|---------------|-----------------|-----|---------------|---------------|--------|
| Network:                               | City of Detr | oit (Transit) | Site:         | MTMS I          | ₋ab | Date: 7/13/23 |               | 23     |
| Time Off-Line:                         |              | 7:20          | Time On-Line: |                 |     | Technician:   | Jeremy l      | _evine |

| Calibration<br>Equipment<br>Info. | Analyzer Model:       | Aeroqual AQS-1 | S/N:              | 1839    | Last Cal:                  | 5/31/23 |
|-----------------------------------|-----------------------|----------------|-------------------|---------|----------------------------|---------|
|                                   | Calibrator Model No.: | Teledyne API   | S/N:              | 69      | Cal. Date:                 | 3/2/23  |
|                                   | Zero Air Model No.:   | Teledyne API   | S/N:              | n/a     | Cert Date:                 | n/a     |
|                                   | Gas Supplier:         | Airgas         | Cyl. Cert. Date:  | 1/26/21 | Cyl. Pressure (PSIG)       | 1,400   |
|                                   | Gas Cylinder ID #:    | D068357        | Cyl. Conc. (PPM): | 30.95   | Gas Module Total Flow Rate | 130 mL  |

| Analyzer Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |  |  |
|-------------------------------|------------------------------------|------------------------------|--|--|
| OFFSET                        | 0.0                                | 0.0                          |  |  |
| GAIN                          | 1.214                              | 1.055                        |  |  |

|                              | Calibrator Flow and Test Gas Data |                              |                            |                                          | NO <sub>2</sub> Response |                    | Δ%                                |           |  |
|------------------------------|-----------------------------------|------------------------------|----------------------------|------------------------------------------|--------------------------|--------------------|-----------------------------------|-----------|--|
| Calibrator Ga                | as Channel                        | nel Calibrator Air Channel   |                            |                                          | Observed from AQS-1      |                    | (Observed                         |           |  |
| Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM)        | Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM) | Known NO <sub>2</sub> Gas<br>Conc. (PPB) | Response<br>(PPB)        | Std. Dev.<br>(PPB) | Response Vs.<br>Known Conc.)<br>3 | PASS/FAIL |  |
| 0.0452                       | 0.0453                            | 3.4548                       | 3.4790                     | 397.8                                    | 457.8                    | 0.5                | 15.1%                             |           |  |
| 0.0484                       | 0.0486                            | 4.9516                       | 4.9738                     | 299.5                                    | 344.7                    | 0.6                | 15.1%                             |           |  |
| 0.0323                       | 0.0324                            | 4.9677                       | 4.9942                     | 199.5                                    | 228.7                    | 0.7                | 14.6%                             |           |  |
| 0.0161                       | 0.0163                            | 4.9839                       | 5.0097                     | 100.4                                    | 113.1                    | 0.8                | 12.6%                             |           |  |
| OFF                          | OFF                               | 5.0000                       | 5.0184                     | 0.0                                      | -0.2                     | 0.3                | -                                 |           |  |
|                              | Linear Regression Analysis:       |                              |                            |                                          |                          |                    |                                   |           |  |
| Slope:                       | 1.153                             | 3705                         | Intercept:                 | -1.274859                                | Corr. C                  | oefficient (r):    | 0.999                             | 987       |  |

**NOTES:** 

## AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

|            | Calibration Data on This Form Are For: Unadjusted Cal. Adjusted Ca |               |               |        | Adjusted Cal. | Х           |                          |  |
|------------|--------------------------------------------------------------------|---------------|---------------|--------|---------------|-------------|--------------------------|--|
| Network:   | City of Detr                                                       | oit (Transit) | Site:         | MTMS I | ∟ab           | Date:       | Date: 7/13/23            |  |
| Time Off-L | _ine:                                                              | 7:20          | Time On-Line: | 13:53  | 3             | Technician: | echnician: Jeremy Levine |  |

|             | Analyzer Model:       | Aeroqual AQS-1 | S/N:              | 1839    | Last Cal:                  | 5/31/23 |
|-------------|-----------------------|----------------|-------------------|---------|----------------------------|---------|
| Calibration | Calibrator Model No.: | Teledyne API   | S/N:              | 69      | Cal. Date:                 | 3/2/23  |
| Equipment   | Zero Air Model No.:   | Teledyne API   | S/N:              | n/a     | Cert Date:                 | n/a     |
| Info.       | Gas Supplier:         | Airgas         | Cyl. Cert. Date:  | 1/26/21 | Cyl. Pressure (PSIG)       | 1,400   |
|             | Gas Cylinder ID #:    | D068357        | Cyl. Conc. (PPM): | 30.95   | Gas Module Total Flow Rate | 130 mL  |

| Analyzer Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |  |  |
|-------------------------------|------------------------------------|------------------------------|--|--|
| OFFSET                        | 0.0                                | 0.0                          |  |  |
| GAIN                          | 1.214                              | 1.055                        |  |  |

|                              | Calibrato                   | or Flow and T                | est Gas Data               |                              | NO <sub>2</sub> Re | sponse             | Δ%                                |           |
|------------------------------|-----------------------------|------------------------------|----------------------------|------------------------------|--------------------|--------------------|-----------------------------------|-----------|
| Calibrator Ga                | as Channel                  | Calibrator                   | Air Channel                |                              | Observed f         | rom AQS-1          | (Observed                         |           |
| Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM)  | Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM) | Known NO₂ Gas<br>Conc. (PPB) | Response<br>(PPB)  | Std. Dev.<br>(PPB) | Response Vs.<br>Known Conc.)<br>3 | PASS/FAIL |
| 0.0452                       | 0.0453                      | 3.4548                       | 3.4796                     | 397.8                        | 394.1              | 0.2                | -0.9%                             |           |
| 0.0484                       | 0.0485                      | 4.9516                       | 4.9799                     | 298.5                        | 297.4              | 0.7                | -0.4%                             |           |
| 0.0323                       | 0.0324                      | 4.9677                       | 4.9936                     | 199.5                        | 196.8              | 0.7                | -1.4%                             |           |
| 0.0161                       | 0.0163                      | 4.9839                       | 5.0085                     | 100.4                        | 97.9               | 0.4                | -2.5%                             |           |
| OFF                          | OFF                         | 5.0000                       | 5.0188                     | 0.0                          | 0.3                | 0.6                | -                                 |           |
|                              | Linear Regression Analysis: |                              |                            |                              |                    |                    |                                   |           |
| Slope:                       | 0.99                        | 3344                         | Intercept:                 | -0.613883                    | Corr. C            | oefficient (r):    | 0.999                             | 973       |

**NOTES:** 

## **AEROQUAL AQS-1 FLOW and LEAK CHECK FORM**

| QC Checks are: X                               | Scheduled               | Un                      | nscheduled (I                               | f unscheduled, explair                       | ı reason why ir                                      | n "Comments" Section)             |  |
|------------------------------------------------|-------------------------|-------------------------|---------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------|--|
| Network: City of De                            | etroit (Transit)        | Site: Fa                | irgrounds                                   | Date of Check                                | (S:                                                  | 7/14/2023                         |  |
| Operator: Jeremy L                             | evine, Jeff Peitzscl    | า                       |                                             | Time Off-Line                                | :                                                    | EST                               |  |
| AEROQUAL QS-1 S/N:1839                         |                         |                         |                                             | Time On-Line                                 | :                                                    | EST                               |  |
| Reference Standards:                           |                         |                         |                                             |                                              |                                                      |                                   |  |
| Flow Standard: Aeroqual                        | Rotometer               | S/I                     | <b>N#</b> n/a                               |                                              | Cert Date:                                           | n/a                               |  |
|                                                |                         |                         |                                             | resolve leak and com<br>adjustments to the m | •                                                    |                                   |  |
| AQS-1 Expected<br>Flow Rate<br>(A)             | erence<br>v Rate<br>(B) |                         | Profiler<br>Flow Rate<br>Error LPM<br>(A-B) |                                              | Profiler<br>Flow Rate<br>Error Δ%<br>(A-B) ÷ A x 100 |                                   |  |
| 1.0 LPM                                        | 1.0 LPM 1.              |                         | РМ                                          | 0.00                                         |                                                      | 0.0%                              |  |
| Flow Check Procedure Link A                    |                         |                         | •                                           | QS-1 Particle Profile<br>LPM and 1.05 LPM    |                                                      | is                                |  |
| LEAK CHECK DATA:                               |                         |                         |                                             |                                              |                                                      |                                   |  |
| PROFILER LEAKAG                                | E RATE:                 |                         |                                             | 30 seconds                                   | (Must be >1                                          | 0 sec for 10 kPa pressure change) |  |
| Leak Check Procedure Link                      |                         |                         |                                             |                                              |                                                      |                                   |  |
| AS LEFT CHECK DATA                             |                         |                         |                                             |                                              |                                                      |                                   |  |
| FLOW CHECK DATA:  AQS-1 Expected Flow Rate (A) | Flov                    | erence<br>v Rate<br>(B) |                                             | Profiler<br>Flow Rate<br>Error LPM           |                                                      | Profiler<br>Flow Rate<br>Error Δ% |  |
| LPM                                            |                         | LP                      | PM                                          |                                              |                                                      |                                   |  |
| LEAK CHECK DATA:                               |                         |                         |                                             |                                              |                                                      |                                   |  |
| PROFILER LEAKAG                                | E RATE:                 |                         |                                             | seconds                                      | (Must be > 1                                         | 0 sec for 10 kPa pressure change  |  |
|                                                |                         |                         |                                             |                                              |                                                      |                                   |  |
| Comments:                                      |                         |                         |                                             |                                              |                                                      |                                   |  |

Technician: Jeremy Levine

QA Review: Kenkeyster

## AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

| Network         | : City | of Detroit (Transit) | Site:          | MTMS | Lab  | Date: 7/    |            | 26/23     |
|-----------------|--------|----------------------|----------------|------|------|-------------|------------|-----------|
| Time Off-L      | ine:   | 20:27                | Time On-Line:  | 22:1 | 5    | Technician: | Jerem      | ny Levine |
| I               | _      |                      |                |      |      |             |            |           |
|                 |        | Analyzer Model:      | Aeroqual AQS-1 | S/N: | 1839 |             | Last Cal:  | 7/12/23   |
| Calibration     | ,      | Calibrator Model No: | Teledyne API   | S/N: | 69   |             | Cal. Date: | 3/2/23    |
| Equipment Info. |        | Zero Air Model No:   | Teledyne API   | S/N: | n/a  |             | Cert Date: | n/a       |

| VOC Sensor Module<br>Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |
|-------------------------------------------|------------------------------------|------------------------------|
| OFFSET                                    | 0.00                               |                              |
| GAIN                                      | 1.348                              |                              |

Cyl. Conc. (PPM):

49.33

## "AS FOUND" (UNADJUSTED) TEST DATA

Gas Supplier:

AirGas

|                           | Calibrator Flow and Test Gas Data |                           |                         |                          |                     |                    |       |
|---------------------------|-----------------------------------|---------------------------|-------------------------|--------------------------|---------------------|--------------------|-------|
| Calibrator                | Gas Channel                       | Calibrator A              | Air Channel             | Known VOC                | Response from AQS-1 |                    | Error |
| Display Setting<br>(SLPM) | Actual Flow Rate<br>(SLPM)        | Display Setting<br>(SLPM) | Actual Flow Rate (SLPM) | Input Gas<br>Conc. (PPM) | Response<br>(PPM)   | Std. Dev.<br>(PPM) | (∆%)  |
| OFF                       | OFF                               | 5.0000                    | 5.0148                  | 0.00                     | 0.00                | 0.00               | -     |
| 0.0500                    | 0.0501                            | 4.9493                    | 4.9746                  | 0.49                     | 0.50                | 0.00               | 2.0%  |
| 0.0500                    | 0.0502                            | 4.4493                    | 2.4703                  | 0.98                     | 0.94                | 0.00               | -4.1% |

#### "AS LEFT" (ADJUSTED) TEST DATA

|                           | Calibrator Flow and Test Gas Data |                           |                         |                          |                                   |      |       |
|---------------------------|-----------------------------------|---------------------------|-------------------------|--------------------------|-----------------------------------|------|-------|
| Calibrator                | Gas Channel                       | Calibrator A              | Air Channel             | Known VOC                | Response from AQS-1               |      | Error |
| Display Setting<br>(SLPM) | Actual Flow Rate<br>(SLPM)        | Display Setting<br>(SLPM) | Actual Flow Rate (SLPM) | Input Gas<br>Conc. (PPM) | Response Std. Dev.<br>(PPM) (PPM) | (∆%) |       |
| OFF                       | OFF                               | 5.0000                    |                         | 0.00                     |                                   |      | -     |
|                           |                                   |                           |                         |                          |                                   |      |       |
|                           |                                   |                           |                         |                          |                                   |      |       |

## NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm  $\pm$  0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than  $\pm$  0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be  $\pm 1$  ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than  $\pm 1$  ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm  $\pm$  1 ppm.

| nments: |  |
|---------|--|
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |
|         |  |

Technician: Jeremy Levine

QA Review:

MONTROSE AIR QUALITY SERVICES LLC

Cyl. Pressure (PSIG)

2,090

## AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

|          | Calibration Data on This Form Are For |               |               | Unadjusted Cal. | Χ   |             | Adjusted Cal. |        |
|----------|---------------------------------------|---------------|---------------|-----------------|-----|-------------|---------------|--------|
| Network: | City of Detr                          | oit (Transit) | Site:         | MTMS I          | ₋ab | Date:       | Date: 7/27/23 |        |
| Time Off | -Line:                                | 15:56         | Time On-Line: |                 |     | Technician: | Jeremy        | Levine |

|             | Analyzer Model:       | Aeroqual AQS-1 | S/N:              | 1839    | Last Cal:                  | 7/13/23 |
|-------------|-----------------------|----------------|-------------------|---------|----------------------------|---------|
| Calibration | Calibrator Model No.: | Teledyne API   | S/N:              | 69      | Cal. Date:                 | 3/2/23  |
| Equipment   | Zero Air Model No.:   | Teledyne API   | S/N:              | n/a     | Cert Date:                 | n/a     |
| Info.       | Gas Supplier:         | Airgas         | Cyl. Cert. Date:  | 1/26/21 | Cyl. Pressure (PSIG)       | 1,390   |
|             | Gas Cylinder ID #:    | D068357        | Cyl. Conc. (PPM): | 30.95   | Gas Module Total Flow Rate | 130 mL  |

| Analyzer Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |
|-------------------------------|------------------------------------|------------------------------|
| OFFSET                        | 0.0                                |                              |
| GAIN                          | 1.055                              |                              |

|                              | Calibrato                   | or Flow and T                | est Gas Data               |                              | NO <sub>2</sub> Re  | sponse             | Δ%                                |           |
|------------------------------|-----------------------------|------------------------------|----------------------------|------------------------------|---------------------|--------------------|-----------------------------------|-----------|
| Calibrator Ga                | as Channel                  | Calibrator                   | Air Channel                |                              | Observed from AQS-1 |                    | (Observed                         |           |
| Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM)  | Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM) | Known NO₂ Gas<br>Conc. (PPB) | Response<br>(PPB)   | Std. Dev.<br>(PPB) | Response Vs.<br>Known Conc.)<br>3 | PASS/FAIL |
| 0.0452                       | 0.0453                      | 3.4548                       | 3.4786                     | 397.9                        | 386.8               | 0.3                | -2.8%                             |           |
| 0.0484                       | 0.0486                      | 4.9516                       | 4.9791                     | 299.2                        | 289.6               | 0.4                | -3.2%                             |           |
| 0.0323                       | 0.0324                      | 4.9677                       | 4.9929                     | 199.5                        | 192.2               | 0.2                | -3.7%                             |           |
| 0.0161                       | 0.0163                      | 4.9839                       | 5.0123                     | 100.3                        | 95.8                | 0.5                | -4.5%                             |           |
| OFF                          | OFF                         | 5.0000                       | 5.0186                     | 0.0                          | 0.1                 | 0.5                | -                                 |           |
|                              | Linear Regression Analysis: |                              |                            |                              |                     |                    |                                   |           |
| Slope:                       | 0.972                       | 2340                         | Intercept:                 | -0.965106                    | Corr. C             | oefficient (r):    | 0.999                             | 983       |

**NOTES:** 

## AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

| Calibration Data on This Form Are For: |              |               |               | Unadjusted Cal. |  |             | Adjusted Cal. | Х      |
|----------------------------------------|--------------|---------------|---------------|-----------------|--|-------------|---------------|--------|
| Network:                               | City of Detr | oit (Transit) | Site:         | MTMS Lab        |  | Date:       | 7/13/         | /23    |
| Time Off-L                             | _ine:        | 7:20          | Time On-Line: | 13:53           |  | Technician: | Jeremy        | Levine |

| Calibration<br>Equipment<br>Info. | Analyzer Model:       | Aeroqual AQS-1 | S/N:              | 1839    | Last Cal:                  | 5/31/23 |
|-----------------------------------|-----------------------|----------------|-------------------|---------|----------------------------|---------|
|                                   | Calibrator Model No.: | Teledyne API   | S/N:              | 69      | Cal. Date:                 | 3/2/23  |
|                                   | Zero Air Model No.:   | Teledyne API   | S/N:              | n/a     | Cert Date:                 | n/a     |
|                                   | Gas Supplier:         | Airgas         | Cyl. Cert. Date:  | 1/26/21 | Cyl. Pressure (PSIG)       | 1,400   |
|                                   | Gas Cylinder ID #:    | D068357        | Cyl. Conc. (PPM): | 30.95   | Gas Module Total Flow Rate | 130 mL  |

| Analyzer Calibration Settings | "As Found" (Before Any Adjustment) | "As Left" (After Adjustment) |  |  |
|-------------------------------|------------------------------------|------------------------------|--|--|
| OFFSET                        | 0.0                                | 0.0                          |  |  |
| GAIN                          | 1.214                              | 1.055                        |  |  |

|                              | Calibrato                   | or Flow and T                | est Gas Data               |                              | NO <sub>2</sub> Response |                    | Δ%                                |           |
|------------------------------|-----------------------------|------------------------------|----------------------------|------------------------------|--------------------------|--------------------|-----------------------------------|-----------|
| Calibrator Ga                | as Channel                  | Calibrator                   | Air Channel                |                              | Observed from AQS-1      |                    | (Observed                         |           |
| Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM)  | Display<br>Setting<br>(SLPM) | Actual Flow<br>Rate (SLPM) | Known NO₂ Gas<br>Conc. (PPB) | Response<br>(PPB)        | Std. Dev.<br>(PPB) | Response Vs.<br>Known Conc.)<br>3 | PASS/FAIL |
| 0.0452                       | 0.0453                      | 3.4548                       | 3.4796                     | 397.8                        | 394.1                    | 0.2                | -0.9%                             |           |
| 0.0484                       | 0.0485                      | 4.9516                       | 4.9799                     | 298.5                        | 297.4                    | 0.7                | -0.4%                             |           |
| 0.0323                       | 0.0324                      | 4.9677                       | 4.9936                     | 199.5                        | 196.8                    | 0.7                | -1.4%                             |           |
| 0.0161                       | 0.0163                      | 4.9839                       | 5.0085                     | 100.4                        | 97.9                     | 0.4                | -2.5%                             |           |
| OFF                          | OFF                         | 5.0000                       | 5.0188                     | 0.0                          | 0.3                      | 0.6                | -                                 |           |
|                              | Linear Regression Analysis: |                              |                            |                              |                          |                    |                                   |           |
| Slope:                       | 0.99                        | 3344                         | Intercept:                 | -0.613883                    | Corr. C                  | oefficient (r):    | 0.999                             | 973       |

**NOTES:** 

## **AEROQUAL AQS-1 FLOW and LEAK CHECK FORM**

| QC Checks are: X                               | Scheduled            | Un                      | nscheduled (I | f unscheduled, explair                       | ı reason why ir | n "Comments" Section)                                |  |
|------------------------------------------------|----------------------|-------------------------|---------------|----------------------------------------------|-----------------|------------------------------------------------------|--|
| Network: City of De                            | etroit (Transit)     | Site: Fa                | irgrounds     | Date of Check                                | (S:             | 7/14/2023                                            |  |
| Operator: Jeremy L                             | evine, Jeff Peitzscl | า                       |               | Time Off-Line                                | :               | EST                                                  |  |
| AEROQUAL QS-1 S/N:1839                         |                      |                         |               | Time On-Line                                 | :               | EST                                                  |  |
| Reference Standards:                           |                      |                         |               |                                              |                 |                                                      |  |
| Flow Standard: Aeroqual                        | Rotometer            | S/I                     | <b>N#</b> n/a |                                              | Cert Date:      | n/a                                                  |  |
|                                                |                      |                         |               | resolve leak and com<br>adjustments to the m | •               |                                                      |  |
| AQS-1 Expected<br>Flow Rate<br>(A)             | Flow Rate Flow Rate  |                         |               | Profiler<br>Flow Rate<br>Error LPM<br>(A-B)  |                 | Profiler<br>Flow Rate<br>Error Δ%<br>(A-B) ÷ A x 100 |  |
| 1.0 LPM                                        |                      | 1.00 LF                 | РМ            | 0.00                                         |                 | 0.0%                                                 |  |
| Flow Check Procedure Link A                    |                      |                         | •             | QS-1 Particle Profile<br>LPM and 1.05 LPM    |                 | is                                                   |  |
| LEAK CHECK DATA:                               |                      |                         |               |                                              |                 |                                                      |  |
| PROFILER LEAKAG                                | E RATE:              |                         |               | 30 seconds                                   | (Must be >1     | 0 sec for 10 kPa pressure change)                    |  |
| Leak Check Procedure Link                      |                      |                         |               |                                              |                 |                                                      |  |
| AS LEFT CHECK DATA                             |                      |                         |               |                                              |                 |                                                      |  |
| FLOW CHECK DATA:  AQS-1 Expected Flow Rate (A) | Flov                 | erence<br>v Rate<br>(B) |               | Profiler<br>Flow Rate<br>Error LPM           |                 | Profiler<br>Flow Rate<br>Error Δ%                    |  |
| LPM                                            |                      | LP                      | PM            |                                              |                 |                                                      |  |
| LEAK CHECK DATA:                               |                      |                         |               |                                              |                 |                                                      |  |
| PROFILER LEAKAG                                | E RATE:              |                         |               | seconds                                      | (Must be > 1    | 0 sec for 10 kPa pressure change                     |  |
|                                                |                      |                         |               |                                              |                 |                                                      |  |
| Comments:                                      |                      |                         |               |                                              |                 |                                                      |  |

Technician: Jeremy Levine

QA Review: Kenkeyster

## Appendix B: Calibration Certification Sheets





**Airgas Specialty Gases** Airgas USA, LLC 24075 US Hwy 6 Stryker, OH 43557 Airgas.com

## **CERTIFICATE OF ANALYSIS**

**Grade of Product: CERTIFIED STANDARD-SPEC** 

Part Number: Cylinder Number: X02NI99C15A0104

EB0112566

Balance

124 - Stryker (SAP) - OH

Laboratory: Analysis Date:

141-402072346-1

Lot Number:

**NITROGEN** 

Mar 31, 2021

Reference Number:

Cylinder Volume: 144.4 CF Cylinder Pressure:

Valve Outlet:

141-402072346-1

2015 PSIG

350

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/or N.I.S.T. Gas Mixture reference materials.

#### **ANALYTICAL RESULTS** Component Req Conc **Actual Concentration Analytical** (Mole %) Uncertainty ISOBUTYLENE 50.00 PPM 49.33 PPM +/- 2%



Approved for Release



## **CERTIFICATE OF ANALYSIS**

## **Grade of Product: TRACEABILITY STANDARD**

Part Number: Cylinder Number: X02NI99T33W0004

D068357

Laboratory:

124 - Chicago (SAP) - IL

Reference Number: 54-402006473-1

Cylinder Volume:

32.0 CF Cylinder Pressure: 2218 PSIG

Valve Outlet:

660

Certification Date:

Jan 26, 2021

Expiration Date: Jan 26, 2024

This cylinder has been analytically certified as directly traceable to NIST with a total analytical uncertainty as stated below with a confidence level of 95%, in accordance with Airgas ISO procedures. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder Below 100 psig

| ANALYTICAL RESULTS                                                                       |                 |                     |                     |                         |                           |              |  |  |  |
|------------------------------------------------------------------------------------------|-----------------|---------------------|---------------------|-------------------------|---------------------------|--------------|--|--|--|
| Compo                                                                                    | nent            | Requesto<br>Concent |                     | Actual<br>Concentration | Total Relat<br>Uncertaint |              |  |  |  |
| NITROGEN DIOXIDE 30.00 PPM 30.95 PPM +/- 1% NIST Traceable NITROGEN Balance              |                 |                     |                     |                         |                           |              |  |  |  |
| CALIBRATION STANDARDS  Type Lot ID Cylinder No Concentration Uncertainty Expiration Date |                 |                     |                     |                         |                           |              |  |  |  |
| GMIS                                                                                     | 401438584104    | EB0120492           | 48.18 PPM NITRO     | GEN DIOXIDE/NITROGEN    | +/- 1.8%                  | Nov 01, 2022 |  |  |  |
| ANALYTICAL EQUIPMENT                                                                     |                 |                     |                     |                         |                           |              |  |  |  |
| Instrum                                                                                  | nent/Make/Model |                     | Analytical Principl | e Last                  | Multipoint Calibr         | ation        |  |  |  |
| MKS FTI                                                                                  | R NO2 017707558 |                     | FTIR                | Jan 0                   | 7, 2021                   |              |  |  |  |

Triad Data Available Upon Request

PERMANENT NOTES: OXYGEN ADDED TO MAINTAIN STABILITY



Approved for Release

# Using Bios Dry-Cal Flow Standard(s) PPLICATION INFORMATION:

| Calibrator Model/S/N:       | TAPI T700; SN 69 |                    | NETWORK:         | Marathon      | Detroit PAMS    | SITE:           | MTMS  |
|-----------------------------|------------------|--------------------|------------------|---------------|-----------------|-----------------|-------|
| Calibration Site:           | MTMS Site        |                    | Test Date:       | 3/2/2023      |                 |                 |       |
| Barometric Pressure (Pa, ir | n mmHg): 74      | 3.0                | Calibrated by:   | Jeremy Levin  | е               |                 |       |
| Flow Standard Model:        | Mesa Labs Defend | ler 530+ M, 530+ H | Air Temp. (Ta,   | in deg. C):   | 23.1            | (=deg. K):      | 296.3 |
| Flow Standard Base S/N:     | Not Applicable   |                    | Flow Cell Mode   | l No:         | Defender 530+ N | Defender 530+ H |       |
| Certification Date:         | Not Applicable   |                    | Flow Cell S/N:   |               | 205428          | 205361          |       |
|                             |                  |                    | Flow Cell Certif | ication Date: | 7/22/2022       | 7/21/2022       |       |

Air Channel Gas Channel Check One: X

| (X)<br>MFC Drive  |                          |                          | ow Meter Readin<br>s of 10 averaged | •                     |                          | Average<br>Flow  | STD DEV                   | Flow Rate From Previous | Δ%<br>("New Cal Flow"   |
|-------------------|--------------------------|--------------------------|-------------------------------------|-----------------------|--------------------------|------------------|---------------------------|-------------------------|-------------------------|
| Voltage<br>(mVDC) | F <sub>1</sub><br>(SLPM) | F <sub>2</sub><br>(SLPM) | F <sub>3</sub> (SLPM)               | F <sub>4</sub> (SLPM) | F <sub>5</sub><br>(SLPM) | (F1F5)<br>(SLPM) | F1F5<br>(in <u>sccm</u> ) | <u>Cal</u><br>(SLPM)    | Vs<br>"Prev. Cal Flow") |
| 5000              | 10.8520                  | 10.8580                  | 10.8420                             | 10.8600               | 10.8530                  | 10.853           | 7.0                       | 10.832                  | -0.2%                   |
| 4750              | 10.3170                  | 10.3160                  | 10.3150                             | 10.3110               | 10.3160                  | 10.315           | 2.3                       | 10.266                  | -0.5%                   |
| 4500              | 9.6906                   | 9.6895                   | 9.6869                              | 9.6877                | 9.6923                   | 9.689            | 2.2                       | 9.708                   | 0.2%                    |
| 4250              | 9.1475                   | 9.1495                   | 9.1520                              | 9.1448                | 9.1438                   | 9.148            | 3.4                       | 9.157                   | 0.1%                    |
| 4000              | 8.5987                   | 8.6045                   | 8.6008                              | 8.6002                | 8.5984                   | 8.601            | 2.4                       | 8.603                   | 0.0%                    |
| 3750              | 8.0527                   | 8.0573                   | 8.0563                              | 8.0529                | 8.0549                   | 8.055            | 2.0                       | 8.053                   | 0.0%                    |
| 3500              | 7.5167                   | 7.5172                   | 7.5134                              | 7.5132                | 7.5105                   | 7.514            | 2.8                       | 7.507                   | -0.1%                   |
| 3250              | 6.9823                   | 6.9845                   | 6.9790                              | 6.9783                | 6.9767                   | 6.980            | 3.2                       | 6.967                   | -0.2%                   |
| 3000              | 6.4503                   | 6.4485                   | 6.4492                              | 6.4473                | 6.4441                   | 6.448            | 2.4                       | 6.430                   | -0.3%                   |
| 2750              | 5.9049                   | 5.8928                   | 5.8966                              | 5.9052                | 5.9054                   | 5.901            | 5.9                       | 5.879                   | -0.4%                   |
| 2500              | 5.3137                   | 5.3172                   | 5.3185                              | 5.3195                | 5.3172                   | 5.317            | 2.2                       | 5.334                   | 0.3%                    |
| 2250              | 4.7718                   | 4.7757                   | 4.7813                              | 4.7790                | 4.7793                   | 4.777            | 3.7                       | 4.801                   | 0.5%                    |
| 2000              | 4.2360                   | 4.2314                   | 4.2315                              | 4.2332                | 4.2360                   | 4.234            | 2.3                       | 4.265                   | 0.7%                    |
| 1750              | 3.6825                   | 3.6817                   | 3.6854                              | 3.6793                | 3.6879                   | 3.683            | 3.3                       | 3.724                   | 1.1%                    |
| 1500              | 3.1393                   | 3.1393                   | 3.1519                              | 3.1439                | 3.1461                   | 3.144            | 5.3                       | 3.189                   | 1.4%                    |
| 1250              | 2.6238                   | 2.6284                   | 2.6290                              | 2.6273                | 2.6287                   | 2.627            | 2.1                       | 2.650                   | 0.9%                    |
| 1000              | 2.0926                   | 2.0917                   | 2.0912                              | 2.0918                | 2.0917                   | 2.092            | 0.5                       | 2.115                   | 1.1%                    |
| 750               | 1.5499                   | 1.5498                   | 1.5498                              | 1.5505                | 1.5516                   | 1.550            | 0.8                       | 1.579                   | 1.8%                    |
| 500               | 1.0163                   | 1.0157                   | 1.0146                              | 1.0148                | 1.0145                   | 1.015            | 0.8                       | 1.037                   | 2.1%                    |
| 250               | 0.48024                  | 0.48137                  | 0.48059                             | 0.48179               | 0.48179                  | 0.481            | 0.7                       | 0.493                   | 2.4%                    |
| SLOPE:            | 0.002180501              | -                        | INTERCEPT:                          | -0.102560589          | CORRELAT                 | ON COEFF (r ):   | -                         | 0.999962608             | -                       |

| Comments:  |               |          |   |
|------------|---------------|----------|---|
| echnician: | Jeremy Levine | 3/2/2023 |   |
|            | (signature)   | Date     | , |

# **TAPI T700 MFC Calibration Using Bios Dry-Cal Flow Standard(s)**

| CALIBRATOR APPLI                   | CATION INFORMATION:       |                     |                       |              |       |
|------------------------------------|---------------------------|---------------------|-----------------------|--------------|-------|
| Calibrator Model/S/N:              | TAPI T700; SN 69          | NETWORK:            | Marathon Detroit PAMS | SITE:        | MTMS  |
| Calibration Site:                  | MTMS Site                 | Test Date:          | 3/1/2023              |              |       |
| Barometric Pressure (Pa, in mmHg): | 740.0                     | Calibrated by:      |                       | J Levine     |       |
| Flow Standard Model:               | Mesa Labs Defender 530+ L | Air Temp. (Ta, in o | deg. C): 22.9         | (=deg. K):   | 296.1 |
| Flow Standard Base S/N:            | Not Applicable            | Flow Cell Model N   | lo:                   | 530+ Low Flo | W     |
| Base Certification Date:           | Not Applicable            | Flow Cell S/N:      |                       | 205663       |       |
|                                    |                           | Flow Cell Certifica | tion Date:            | 8/4/2022     |       |

Check One: Air Channel X Gas Channel

| (X)       |          |         | 0.0538           |             |         | Average     | STD DEV           | Flow Rate     | Δ%                |
|-----------|----------|---------|------------------|-------------|---------|-------------|-------------------|---------------|-------------------|
| MFC Drive |          | (5 sets | s of 10 averaged | flows)      |         | Flow        | F1F5              | From Previous | ("New Cal Flow"   |
| Voltage   | $F_1$    | $F_2$   | $F_3$            | $F_4$       | $F_5$   | (F1F5)      |                   | <u>Cal</u>    | Vs                |
| (mVDC)    | (SLPM)   | (SLPM)  | (SLPM)           | (SLPM)      | (SLPM)  | (SLPM)      | (in <u>sccm</u> ) | (SLPM)        | "Prev. Cal Flow") |
| 5000      | 0.05511  | 0.05513 | 0.05514          | 0.05507     | 0.05504 | 0.0551      | 0.04              | 0.0549        | -0.3%             |
| 4750      | 0.05239  | 0.05240 | 0.05240          | 0.05241     | 0.05240 | 0.0524      | 0.01              | 0.0523        | -0.2%             |
| 4500      | 0.04958  | 0.04960 | 0.04961          | 0.04963     | 0.04964 | 0.0496      | 0.02              | 0.0496        | -0.1%             |
| 4250      | 0.04669  | 0.04674 | 0.04676          | 0.04680     | 0.04683 | 0.0468      | 0.05              | 0.0468        | 0.1%              |
| 4000      | 0.04415  | 0.04416 | 0.04412          | 0.04406     | 0.04405 | 0.0441      | 0.05              | 0.0441        | 0.1%              |
| 3750      | 0.04147  | 0.04148 | 0.04146          | 0.04150     | 0.04145 | 0.0415      | 0.02              | 0.0414        | -0.2%             |
| 3500      | 0.03870  | 0.03873 | 0.03874          | 0.03873     | 0.03875 | 0.0387      | 0.02              | 0.0387        | -0.2%             |
| 3250      | 0.03587  | 0.03589 | 0.03591          | 0.03593     | 0.03597 | 0.0359      | 0.04              | 0.0359        | -0.1%             |
| 3000      | 0.03329  | 0.03327 | 0.03324          | 0.03320     | 0.03318 | 0.0332      | 0.05              | 0.0331        | -0.5%             |
| 2750      | 0.03054  | 0.03055 | 0.03056          | 0.03057     | 0.03056 | 0.0306      | 0.01              | 0.0304        | -0.5%             |
| 2500      | 0.02775  | 0.02777 | 0.02778          | 0.02779     | 0.02781 | 0.0278      | 0.02              | 0.0277        | -0.5%             |
| 2250      | 0.02502  | 0.02498 | 0.02500          | 0.02498     | 0.02499 | 0.0250      | 0.02              | 0.0249        | -0.3%             |
| 2000      | 0.02231  | 0.02232 | 0.02232          | 0.02232     | 0.02230 | 0.0223      | 0.01              | 0.0222        | -0.7%             |
| 1750      | 0.01950  | 0.01951 | 0.01952          | 0.01952     | 0.01953 | 0.0195      | 0.01              | 0.0193        | -0.9%             |
| 1500      | 0.01668  | 0.01667 | 0.01667          | 0.01668     | 0.01669 | 0.0167      | 0.01              | 0.0166        | -0.6%             |
| 1250      | 0.01392  | 0.01393 | 0.01394          | 0.01394     | 0.01392 | 0.0139      | 0.01              | 0.0138        | -0.9%             |
| 1000      | 0.01110  | 0.01106 | 0.01107          | 0.01110     | 0.01111 | 0.0111      | 0.02              | 0.0110        | -1.0%             |
| 750       | 0.00831  | 0.00831 | 0.00832          | 0.00832     | 0.00831 | 0.0083      | 0.01              | 0.0082        | -1.3%             |
| 500       | 0.00548  | 0.00545 | 0.00547          | 0.00546     | 0.00546 | 0.0055      | 0.01              | 0.0054        | -1.9%             |
| 250       | 0.00261  | 0.00264 | 0.00262          | 0.00262     | 0.00262 | 0.0026      | 0.01              | 0.0025        | -6.0%             |
| SLOPE:    | 0.000011 |         | INTERCEPT:       | 0.000167747 |         | CORRELATION | COEFF (r ):       | 0.999979775   |                   |

| Comments: |             |               |             |        |
|-----------|-------------|---------------|-------------|--------|
|           | Technician: | Jeremy Levine |             | 3/1/23 |
|           | •           |               | (signature) | Date   |

## Appendix C: Locations of MI EGLE Monitors Relative to the Former State Fairgrounds



#### **Locations of MI EGLE Monitors Relative to the Former State Fairgrounds**

