

NTH Consultants, Ltd.

Infrastructure Engineering and Environmental Services

Mr. Hosam Hassanien, PG, CPG City of Detroit Environmental Affairs 2 Woodward Avenue – CAYMC, Suite 401 Detroit, MI 48226 2990 W. Grand Blvd., Suite M-10 Detroit, MI 48202 Phone: 313-237-3900 Fax: 313-237-3909

August 16, 2021 NTH Project No. 74-200457-05

RE: Ambient Air Quality Monitoring – 3rd Construction Phase Monitoring Report Proposed Amazon Distribution Center Detroit, Michigan

Dear Mr. Hassanien:

The City of Detroit (City) recently completed a property transaction for a new Amazon Distribution Center to be constructed on a 137-acre parcel at the former State Fairgrounds property located at 1120 W. State Fair Avenue in Detroit, Michigan. The City contracted NTH Consultants, Ltd. (NTH) to conduct ambient air quality monitoring at the proposed Amazon Distribution Center site (Site).

The monitoring program consists of siting localized monitors at an upwind and downwind locations to measure concentrations of particulate matter (PM₁₀ and PM_{2.5}), nitrogen oxide (NO_x, as NO₂), and volatile organic compounds (VOCs), and evaluate air quality from the Site during three (3) distinct phases:

- Pre-development baseline period
- Construction phase
- Post-construction facility operation

Pre-Development Baseline Period (Completed)

NTH's Baseline Monitoring Report, dated May 7, 2021, presented ambient concentrations prior to significant construction activities at the Site. The baseline period included monitoring data collected by Montrose Air Quality Services, LLC (MAQS), from January 22, 2021 through March 5, 2021, and was supplemented with monitoring data collected by the Site developer's consultant (Langan) from November 13, 2020 through December 2, 2020. The purpose of the Baseline Monitoring Report was to establish an ambient background concentration for each pollutant and use that concentration as a baseline whereas concentrations measured above these levels during construction would trigger the contractor to employ additional mitigation efforts to reduce pollutant concentrations.

The concentrations in Table 1 were published in the Baseline Monitoring Report and represent pollutant concentrations prior to start of significant construction activities. Each concentration is also compared to the applicable National Ambient Air Quality Standards (NAAQS) protective of public health and the environment.

Table 1	Table 1 Site Specific Dasenne Concentrations if om The Development Dasenne Ferrou										
Pollutant	Operator	Monitor ¹	Monitor 1Baseline ConcentrationDate of Basel Concentration		NAAQS	Units					
PM10	Langan	ML2	47	11/25/2020	150	$\mu g/m^3$					
PM _{2.5}	Langan	ML2	22	11/25/2020	35	$\mu g/m^3$					
NO ₂	MAQS	Unit 1480	52	1/30/2021	100	ppb					
VOC	Langan	ML1	0.11	11/14/2020	NA ²	ppm					

 Table 1 – Site-Specific Baseline Concentrations from Pre-Development Baseline Period

¹ Baseline Monitoring included two (2) Site monitors operated by MAQS for NTH from January 22 through March 5, 2021 and identified as Unit 1479 (upwind location) and Unit 1480 (downwind location), as well as monitoring data provided by Hillwood Development Company (HDC), the project developers, for the period November 13, 2020 through December 2, 2020 from five (5) monitoring locations at the project Site and identified as ML1, ML2, ML3, ML4 and ML5.

² NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NO_x and VOCs in certain ambient conditions (typically hot, sunny weather)

Construction Phase Monitoring

The enclosed report presents the results of the 3rd construction phase monitoring event that was conducted for the one (1)-week period of July 18, 2021 through July 24, 2021. The goal of construction phase monitoring is to collect concentration data of target air pollutants during construction activities consisting of paving, concrete work, steel construction, roofing, interior buildout, electrical work, and plumbing to assess whether additional mitigation efforts are warranted to reduce pollutant concentrations to below baseline levels.

The enclosed 3rd Construction Phase Monitoring Report describes the monitoring program, objectives, Site overview, monitor locations and equipment, monitoring results, and an overview of data quality assurance.

The report includes monitoring data from two (2) available sources, including:

- Two (2) Site monitors operated by MAQS for NTH during the monitoring period (July 18, 2021 through July 24, 2021) and identified as Unit 1479 (upwind location) and Unit 1480 (downwind location).
- Nearby off-site monitors operated by Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the MAQS monitoring period.

As part of this air monitoring program, MAQS collected one (1) week of air monitoring data for NO_x (as NO₂), PM₁₀ and PM_{2.5}, and VOCs at two (2) monitors, along with prevailing wind directions and speeds (vectors).

The City anticipates that development of the proposed Amazon Distribution Center may result in direct and fugitive air emissions from construction activities, as well as future operations. Sources of NO_x and VOC emissions related to construction may include vehicular traffic and diesel engines (over-the-road and non-road heavy duty construction). Potential emissions of PM₁₀ and PM_{2.5} related to construction may include fugitive dust associated with vehicular traffic, soil handling, material storage piles, concrete batching, and abrasives blasting.

The monitors, designated as Unit 1479 and Unit 1480, were located on opposite sides of the Site and both stations are configured to collect pollutant and meteorological data. The upwind monitor (Unit 1479) measures pollutant concentrations that have not blown across the Site and should be free from potential impacts of on-site development activity and is representative of local area background concentrations.

Site-specific meteorological data was not available from Unit 1480 between 12:00 a.m. on July 18, 2021 and 9:00 a.m. on July 20, 2021 due to an equipment malfunction. Meteorological data was still recorded on Unit 1479 during that period. Only the meteorological data from Unit 1480 was offline; the pollutant data was recorded for both monitoring units for the entire monitoring event.

Results of Construction Phase Monitoring

As presented below and in the enclosed report, for monitoring conducted July 18 through July 24, 2021, concentrations of PM_{10} , $PM_{2.5}$, NO_x (as NO_2) and VOC from the on-site monitors are less than their baseline concentrations, as summarized in Table 2. NO_x (as NO_2) concentrations are less than the 1-hour NAAQS of 100 ppb for NO_2 .¹ Monitored concentrations of PM_{10} , $PM_{2.5}$ are also less than the 24-hour NAAQS of 150 μ g/m³ for PM_{10} , 35 μ g/m³ for $PM_{2.5}$.

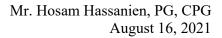

Pollutant	Maximum Concentration	Monitor	Date of Maximum Concentration	Baseline Concentration	NAAQS	Units
PM ₁₀	29.7	Unit 1480	7/20/2021	47	150	$\mu g/m^3$
PM _{2.5}	19.3	Unit 1480	7/20/2021	22	35	$\mu g/m^3$
NO ₂	33.5	Unit 1480	7/19/2021	52	100	ppb
VOC	0.02	Unit 1480	7/22/2021	0.11	NA ¹	ppm

 Table 2 – Summary of Air Monitoring from July 18 through July 24, 2021

On July 19, 20, and 24 PM_{2.5} and PM₁₀ were elevated to concentrations approaching the baseline concentrations at both the upwind and downwind monitors. These elevated concentrations were likely due to wildfires in the western United States and Canada. EGLE's particulate matter monitors in Dearborn also recorded increased concentrations during these periods. Concentrations at the on-site monitors did not exceed the baseline values or NAAQS during the monitoring period.

In summary, the data collected during this air monitoring event are not indicative of a threat to public health or unusual concentrations of the analyzed parameters.

¹ NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NO_x and VOCs in certain ambient conditions (typically hot, sunny weather).

We appreciate this opportunity to be of service to you. If you have questions or need additional information, please contact us at 248-662-2740.

Sincerely,

NTH Consultants, Ltd.

-DocuSigned by: Christopher O. Occlupinti _____F72D85E12731430...

Christopher O. Occhipinti Project Professional

DocuSigned by: Blushan (. Modi

Bhushan C. Modi Project Manager

COO/BCM/clm

Attachments

3rd CONSTRUCTION PHASE MONITORING REPORT PROPOSED AMAZON DISTRIBUTION CENTER (FORMER MICHIGAN STATE FAIRGROUNDS) CITY OF DETROIT DETROIT, MICHIGAN

Prepared For: **NTH Consultants, Ltd.** 2990 W. Grand Blvd., Suite M-10 Detroit, MI 48202

Prepared By: Montrose Air Quality Services, LLC 45 U.S. 46, Suite 601 Pine Brook, NJ 07058

Document Number: NTH Project Number: Monitoring Period: Submittal Date: 011AA-5509-RT-29 74-200457-03 July 18, 2021 through July 24, 2021 August 11, 2021

Table of Contents

PROJECT OVERVIEW	1
Background Objectives Potential Sources Site Overview Figure 1-A – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Figure 1-B – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Property and Nearby MI EGLE Monitoring Stations Monitoring Equipment Discussion of Results	1 3 e 3 e 4 5
METEOROLOGICAL DATA COLLECTED	
FIGURE 2-A – Wind Rose From 1479 Monitor	7
FIGURE 2-B – Wind Rose From 1480 Monitor	8
POLLUTANT DATA COLLECTED	9
Figure 3 – PM_{10} Data Figure 4 – $PM_{2.5}$ Data Figure 5 – NO_2 Data Figure 6 – VOC Data	10 11
DATA QUALITY ASSURANCE/QUALITY CONTROL	13
Quality Assurance/Quality Control	13
SIGNATURE PAGE	14
APPENDIX	15
B: Calibration Certification Sheets	

C: State Monitor Map

Project Overview

Background

NTH Consultants, Ltd. (NTH) contracted Montrose Air Quality Services, LLC (Montrose) to conduct an ambient air monitoring program on behalf of the City of Detroit at the proposed Amazon Distribution Center located at the former Michigan State Fairgrounds in Detroit, Michigan. The program is conducted to monitor for a mixture of pollutants that may originate from construction activities as well as future Site operations including vehicular traffic, surface attrition, and dust emissions.

The Baseline Monitoring Report presented ambient concentrations prior to significant Site construction activities. The baseline period included monitoring data collected by Montrose for the period January 22, 2021 through March 5, 2021 and was supplemented with monitoring data collected by the Site developer during the period November 13, 2020 through December 2, 2020. The purpose of the Baseline Monitoring report was to establish an ambient background concentration for each pollutant and use that concentration as a baseline whereas concentrations measured above these levels during construction would trigger the contractor to employ additional mitigation efforts to reduce pollutant concentrations to below baseline.

The 1st Construction Phase Report, dated June 8, 2021 presented monitoring data collected April 14 through April 21, 2021.

The 2nd Construction Phase Monitoring Report included data from monitors operated by Montrose and Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the monitoring period commencing on June 20 and concluding on June 27, 2021.

This 3rd Construction Phase Monitoring Report includes data from monitors operated by Montrose and Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the monitoring period commencing on July 18 and concluding on July 24, 2021.

Objectives

The specific objectives are to measure ambient concentrations of the following parameters at two (2) monitoring locations:

- Particulate Matter (PM₁₀) of diameter equal to or less than 10 microns
- Particulate Matter (PM_{2.5}) of diameter equal to or less than 2.5 microns
- Nitrogen Dioxide (NO₂)
- Volatile Organic Compounds (VOC)
- Meteorological parameters (i.e., wind speed, wind direction, temperature, relative humidity, and barometric pressure)

Potential Sources

Sources of NO₂ and VOC emissions related to construction include vehicular traffic and diesel engines (over-the-road and non-road, heavy-duty construction). Potential emissions of PM_{10} and $PM_{2.5}$ related to construction may include the sources identified above for NO_x and VOC emissions and also fugitive dust associated with vehicular traffic, soil handling, material storage piles, concrete batching, and abrasives blasting.

Operational Staff and Contacts

Facility Information

Monitoring Location:	Proposed Amazon Distribution Facility
	Former Michigan State Fairgrounds
	1120 W. State Fair Avenue
	Detroit, MI 48203

Monitoring Program Coordinator

NTH Consultants, Ltd. 2990 W. Grand Blvd., Suite M-10 Detroit, MI 48202

Mr. Bhushan Modi
Project Manager
NTH Consultants, Ltd.
248-662-2740
bmodi@nthconsultants.com

Monitoring Team Contact Information

Testing Firm: Montrose Air Quality Services, LLC (Montrose)

Contact:David CummingsTitle:District ManagerTelephone:201-213-2913Email:dcummings@montrose-env.com

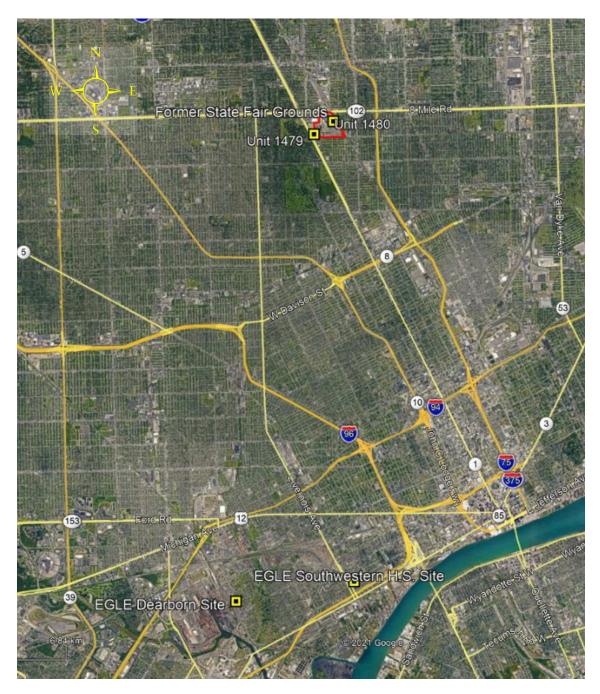
Contact:	Kevin Ruggiero
Title:	Project Manager
Telephone:	973-417-6487
Email:	kruggiero@montrose-env.com

Contact: Jeffrey Peitzsch Title: Shop Coordinator Telephone: 313-213-4816 Email: jbpeitzsch@montrose-env.com

Site Overview

The Site air quality monitoring was performed at the proposed Amazon Distribution Center (former Michigan State Fairgrounds) property located at 1120 W State Fair Avenue in Detroit, MI. This area was purchased by Hillwood Development Company, LLC (Hillwood) who will be demolishing the existing structures onsite and building a large warehouse that will be occupied by an Amazon distribution center. The two (2) Site monitor locations are identified in Figure 1-A below.

Figure 1-A – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Property



Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) 3rd Construction Phase Monitoring Report Report ID: 011AA-5509-RT-29

Figure 1-B is an aerial view of the two monitoring Site locations at the proposed Amazon Distribution Center (former Michigan State Fairgrounds) property and two nearby air monitoring stations maintained by the Michigan Department of Environment, Great Lakes, and Energy (EGLE). Monitoring data available from the two nearby EGLE monitoring stations are intercompared in this report with corresponding monitoring data reported from the monitors operated at the former Michigan State Fairgrounds property.

Figure 1-B – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Property and Nearby MI EGLE Monitoring Stations

Monitoring Equipment

The air monitoring at the proposed Amazon Distribution Center (former Michigan State Fairgrounds) was performed using an AQS1 Urban Air Quality Monitor manufactured by Aeroqual. In the device, sampling occurs actively by pulling in ambient air via a pump and the air sample passing over the surface of each sensor. Each device used in this project is powered by deep-cycle batteries charged by solar photovoltaic panels and transmits data via cellular signal. Monitoring was conducted for the constituents listed in Table 1.

Table 1 - Pollutants Monitored

Air Pollutant/Parameter Category	Principle of Operation
PM ₁₀ and PM _{2.5}	Laser Scattering
NO ₂	Electrochemical
VOC	Photoionization
Wind Speed, Wind Direction, Temperature, Relative Humidity, Barometric Pressure	Sonic Anemometer and Various

The sampled particles are measured by the physical principle of light scattering. Each single particle is illuminated by a defined laser light and each scattering signal is detected at an angle of 90° by a photo diode. In accordance with the Mie theory, each measured pulse height is directly proportional to the particle size, where each pulse is classified in an electronic register of 32 different size channels.

Electrochemical sensors measure the concentration of a specific gas within an external circuit via oxidation or reduction reactions. These reactions generate the positive or negative current flow through the external circuit. An electrochemical sensor is made up of a working counter and reference electrode. All of these components are situated inside of a sensor housing along with a liquid electrolyte that is specific to the compound of interest.

A Photoionization Detector (PID) sensor contains a lamp that produces photons that carry enough energy to break molecules into ions. The PID will only respond to molecules that have an ionization energy at or below the energy of the lamp; the PID used on this project employs a 10.6 electron-volt lamp. The produced ions then generate an electrical current that is measured as the output of the detector.

All operation and maintenance procedures contained in the monitoring plan dated January 10, 2021 were followed for the continuous monitoring equipment.

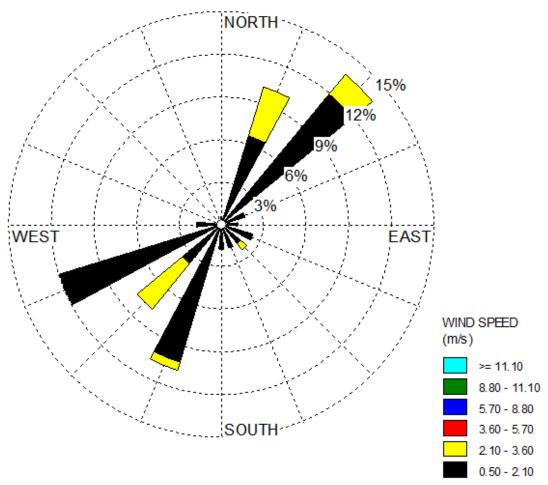
Discussion of Results

The results of PM_{10} , $PM_{2.5}$, NO_2 , and VOC monitoring data are presented in Figures 3 through 6 in this report. These figures also include data for the same time period from nearby air monitoring stations maintained by the Michigan Department of Environment, Great Lakes, and Energy (EGLE). The EGLE data contained in this report are from monitors that are routinely subjected to calibration and maintenance. It should be noted that, as of the date of this report, the EGLE data have not yet been processed through EGLE final quality assurance procedures. The monitor locations for EGLE Sites can be found on the map provided in Appendix C (*State Monitor Map*).

The Clean Air Act requires EPA to establish National Ambient Air Quality Standards (NAAQS) for certain air pollutants considered harmful to public health and the environment. Air pollutants for which NAAQS are established include NO_2 , $PM_{2.5}$ and PM_{10} . NAAQS have not been established for VOCs. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NO_x and VOCs in certain ambient conditions.

The graphed data shown in Figures 3 through 5 present measured concentrations for these pollutants collected during the monitoring period relative to the Baseline concentration and NAAQS Standard.

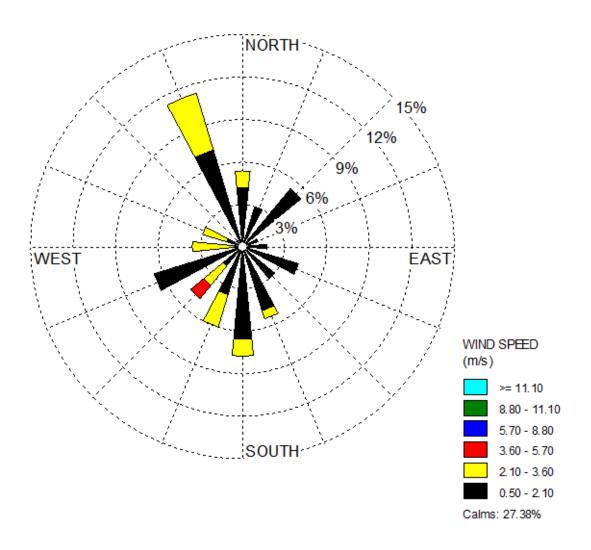
The NAAQS for NO₂, PM_{2.5}, and PM₁₀ were not exceeded during these monitoring periods.


Electronic records of all data and calibrations have been uploaded to the Montrose Data Server, where they will be archived for a period of at least three (3) years.

Meteorological Data Collected

Figures 2-A and 2-B present wind roses derived from the meteorological data collected from each of the two monitors operated at the former State Fairgrounds over the course of the monitoring period of 7/18/21 to 7/24/21. The wind rose presented in Figure 2-A is derived from wind speed and wind direction data collected from monitor 1479. The wind rose presented in Figure 2-B is derived from wind speed and wind direction data collected from Unit 1480. Site-specific meteorological data was not available from Unit 1480 between 12:00 a.m. on July 18, 2021 and 9:00 a.m. on July 20, 2021 due to a malfunction. Meteorological data was still recorded on Unit 1479 during that period and was substituted for the missing data from Unit 1480 for the wind rose in Figure 2-B below.

Figure 2-A – Wind Rose From 1479 Monitor

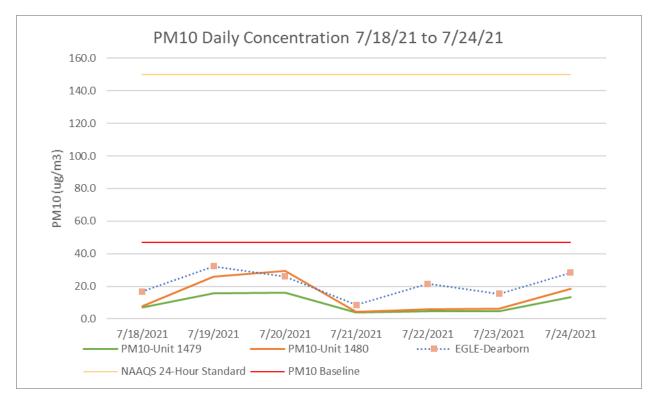


Calms: 32.14%

Page 8

Figure 2-B – Wind Rose From 1480 Monitor

As is evident from the wind rose data, predominant winds were from the south and southwest during the monitoring period. Wind speeds recorded at monitor 1479 were generally very light; wind speeds recorded by monitor 1480 were generally light to moderate.



Pollutant Data Collected

Figure 3 – PM₁₀ Data

The graph below represents the ambient PM_{10} measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 7/18/21 to 7/24/21. This graph is a plot of the PM_{10} measurement data as averaged over each daily monitoring period. The daily averaging interval for PM_{10} data is consistent with the associated EPA primary and secondary PM_{10} NAAQS; a 24-hour (daily) averaged value of 150 micrograms per cubic meter (μ g/m³) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents the 24-hour PM_{10} NAAQS of 150 µg/m³. The solid red line represents the baseline concentration established in the 1st Baseline Report. The PM_{10} monitor at the EGLE Dearborn Site is the closest state-operated PM_{10} monitor relative to the former Michigan State Fairgrounds property. Therefore, the graph below presents the 24-hour averaged data from the EGLE Dearborn continuous PM_{10} monitor for comparison to corresponding PM_{10} measurement data reported from the on-site monitors.

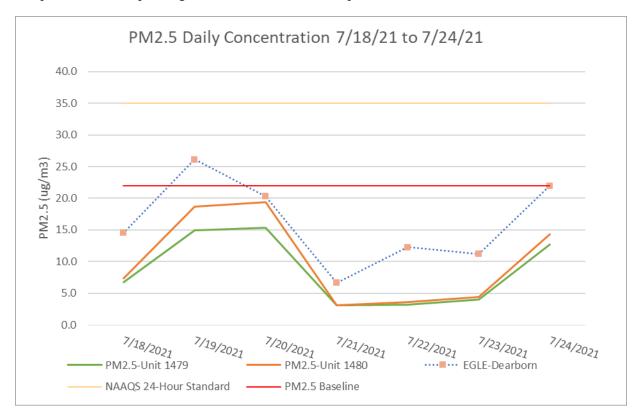


Figure 4 – PM_{2.5} Data

The graph below represents the ambient $PM_{2.5}$ measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 7/18/21 to 7/24/21. This graph is a plot of the $PM_{2.5}$ measurement data as averaged over each daily monitoring period. The daily averaging interval for $PM_{2.5}$ data is consistent with the associated EPA primary and secondary $PM_{2.5}$ NAAQS: A 24-hour (daily) averaged value of 35 micrograms per cubic meter (μ g/m³) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents the 24-hour $PM_{2.5}$ NAAQS of 35 µg/m³. The solid red line represents the baseline concentration established in the 1st Baseline Report. The EGLE Oak Park monitoring Site is the nearest state-operated $PM_{2.5}$ monitor relative to the former Michigan State Fairgrounds property. The EGLE Oak Park $PM_{2.5}$ monitor is a 24-hour, filter-based sampler that collects a sample at 3-day intervals. Filter-based PM samples require gravimetric analysis at a laboratory; EGLE estimates that analytical results for the Oak Park $PM_{2.5}$ filters are delayed on average by approximately three months. Therefore, the graph below presents the 24-hour averaged data from the EGLE Dearborn continuous $PM_{2.5}$ monitor for comparison to corresponding $PM_{2.5}$ measurement data reported from the on-site monitors.

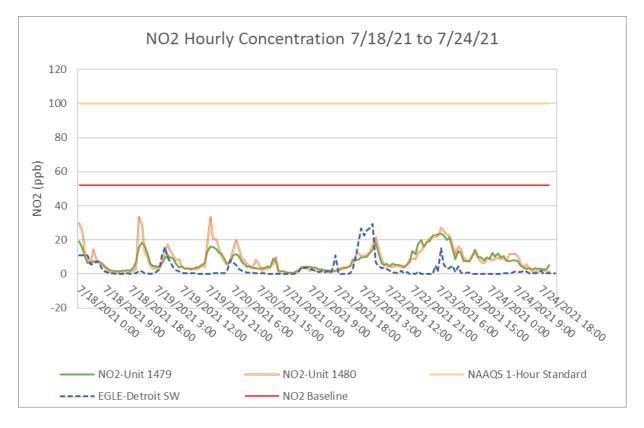


Figure 5 – NO₂ Data

The graph below represents the ambient NO_2 measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 7/18/21 to 7/24/21. This graph is a plot of the NO_2 measurement data as averaged over a period of one (1) hour. This is consistent with the associated EPA primary NO_2 NAAQS: A 1-hour averaged value of 100 parts-per-billion (ppb) not to be exceeded more than once per year on average over 3 years.

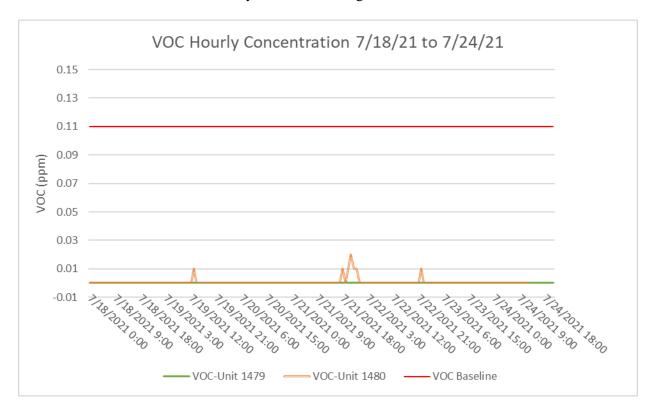

The solid yellow line represents the 1-hour NO₂ NAAQS of 100 ppb. The solid red line represents the baseline concentration established in the 1st Baseline Report. The NO₂ monitor at the EGLE Southwestern High School (SWHS) Site is the closest state-operated NO₂ monitor relative to the former Michigan State Fairgrounds property. Therefore, the graph below presents the 1-hour averaged data from the EGLE SWHS continuous NO₂ monitor for comparison to corresponding NO₂ measurement data reported from the on-site monitors.

Figure 6 – VOC Data

The graph below presents the ambient VOC measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 7/18/21 to 7/24/21. This graph is a plot of the VOC measurement data as averaged over a period of one (1) hour. The solid red line represents the baseline concentration established in the 1st Baseline Report. The EPA has not established a NAAQS for VOC. VOC data are not available from nearby EGLE monitoring Sites.

Page 13

Data Quality Assurance/Quality Control

Quality Assurance/Quality Control

Quality assurance is a general term for the procedures used to ensure that a particular measurement meets the quality requirements for its intended use. Quality control of continuous analyzers consists of precision and span checks or flow verifications. Quality objectives were assessed via Site system audits.

All work performed by Montrose in support of this project follows the operating procedures described in the "Former Michigan State Fairgrounds Work Plan" dated 1/10/21.

All quality control data for the on-site monitors operated at the former Michigan State Fairgrounds property can be found in Appendix A to this report entitled "*Quality Assurance Logs*". Certificates of traceability for the calibration standards and equipment used in support of quality assurance checks are presented in Appendix B to this report entitled "*Calibration Certification Sheets*".

Page 14

Signature Page

Prepared by:

Linda Quigley Data Manager Montrose Air Quality Services LLC

Reviewed by:

Same Commings

David Cummings District Manager Montrose Air Quality Services LLC

Appendix

A: Quality Assurance Logs

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:				Unadjusted Cal.	Х		Adjusted Cal.	
Network:	Network: City of Detroit Site		Site:	MTMS I	_ab	Date:	7/14	/21
Time Off-Line: 12:13 El		12:13 EDT	Time On-Line:	14:06 E	DT	Technician:	Dennis W	eyburne

Calibration Equipment Info.	Analyzer Model:	Aeroqual AQS-1	S/N:	1479	Last Cal:	6/16/21
	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	2,000
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	137 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.1	
GAIN	1.245	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	r Air Channel		Observed from AQS-1		(Observed	
Setting	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0490	0.0491	3.7510	3.7651	398.4	412.5	0.5	3.5%	
0.0323	0.0324	4.9677	4.9887	199.7	204.0	0.8	2.2%	
0.0161	0.0162	4.9839	5.0053	99.8	100.5	0.4	0.7%	
0.0081	0.0082	4.9919	5.0139	50.5	48.1	0.3	-4.8%	
OFF	OFF	5.0000	5.0150	0.0	-0.1	0.2		
	Linear Regression Analysis:							
Slope:	1.039	9762	Intercept:	-2.631590	Corr. C	oefficient (r):	0.999	945

NOTES:

1. The NO2 sensor zero response should be 0.0 ppb ± 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than ± 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb ± 0.2 ppb.

3. The NO2 sensor SPAN response should be 400 ppb ± 20 ppb (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ±20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.</p>

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb ± 20 ppb.

Comments:

Unadjusted calibration post-deployment.

Technician: *Dennis Weyburne*

QA Review: Kenkeysters

MONTROSE AIR QUALITY SERVICES LLC

	AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM								
Network:	City of Detroit	Site:	MTMS	_ab	Date: 7/		7/21		
Time Off-Line: 13:17 EDT		Time On-Line:	16:03 EDT		Technician:	Dennis \	Neyburne		
Analyzer Model:		Aeroqual AQS-1	S/N:	1479		Last Cal:	7/12/21		
Calibration Equipment Info.	Calibrator Model No:	Teledyne API	S/N:	69		Cal. Date:	12/29/20		
	Zero Air Model No:	Teledyne API	S/N:	n/a		Cert Date:	n/a		
	Gas Supplier:	AirGas	Cyl. Conc. (PPM):	49.33	Cyl. Pr	essure (PSIG)	2,000		
	Sensor Module gration Settings	"As Found" (Before Any Adjustment)			"As Le	ft" (After Adju	istment)		
		0.00							
		0.847							

UNCLEDANCE MODULE VEDIFICATION (CALIDRATION FORM

Calibrator Flow and Test Gas Data						Observed VOC	
Calibrator	Gas Channel	Calibrator Air Channel		Calibrator Air Channel Known VOC Response from AQS-1		Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0130	0.00	-0.01	0.00	-
0.0500	0.0501	4.9493	4.9698	0.49	0.46	0.00	-6.6%
0.0500	0.0501	2.4493	2.4656	0.98	0.95	0.00	-3.3%

"AS LEFT" (ADJUSTED) TEST DATA

Calibrator Flow and Test Gas Data						Observed VOC			
Calibrator	Gas Channel	Calibrator Air Channel		Calibrator Air Channel Known		Known VOC	Response from AQS-1		Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(∆%)		
							-		

NOTES:

1. The VOC sensor zero response should be 0.0 ppm ± 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than ± 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.

3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm ± 1 ppm.

Comments:

Unadjusted calibration post-deployment.

Technician: Dennis Weyburne

QA Review: Kenkeyster MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:			Unadjusted Cal.	Х	Adjusted Cal.			
Network:	City of	Detroit	Site:	MTMS I	_ab	Date:	7/27	/21
Time Off	-Line:	16:00 EDT	Time On-Line:	17:57 E	DT	Technician:	Kevin Ru	uggiero

	Analyzer Model:	Aeroqual AQS-1	S/N:	1479	Last Cal:	7/14/21
Calibration	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	2,000
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	137 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.1	
GAIN	1.245	

	Calibrator Flow and Test Gas Data				NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed f	rom AQS-1	(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0490	0.0491	3.7510	3.7719	397.7	411.0	2.4	3.3%	
0.0323	0.0324	4.9677	4.9920	199.6	209.7	0.3	5.1%	
0.0161	0.0162	4.9839	5.0053	99.8	102.6	0.3	2.8%	
0.0081	0.0082	4.9919	5.0136	50.5	48.6	0.3	-3.8%	
OFF	OFF	5.0000	5.0150	0.0	0.9	0.1	-	
	Linear Regression Analysis:							
Slope:	1.037	7686	Intercept:	-0.594878	Corr. C	oefficient (r):	0.999	888

NOTES:

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are:	X Scheduled		_Unscheduled (If unsch	eduled, explain reason why i	n "Comments" Section)
Network:	City of Detroit (Amazon)	Site:	Fairgrounds	Date of Checks:	7/27/2021
Operator:	Rob Bienenstein			Time Off-Line:	13:33:00 AN EST
AEROQUAL QS-1 S/N 1479				Time On-Line:	13:59:00 AN EST

Reference Standards:

Iow Standard: Aeroqual 0-5 LPM Rotometer	S/N# n/a	Cert Date: n/a
--	----------	----------------

AS FOUND CHECK DATA

Checks are "as found" checks. Adjust profiler flow or resolve leak and complete "as left" section below if any acceptability limits are exceeded or if any adjustments to the monitor are to be made.

FLOW CHECK DATA:

AQS-1 Expected Flow Rate (A)	Reference Flow Rate (B)	Profiler Flow Rate Error LPM (A-B)	Profiler Flow Rate Error Δ% (A-B) ÷ A x 100		
1.0 LPM	1.0 LPM	0.00	0.0%		
Flow Check Procedure Link Acceptability Limits: The expected AQS-1 Particle Profiler Flow Rate is 1.0 LPM ± 0.05 LPM (between 0.95 LPM and 1.05 LPM) or ≤±5%.					

LEAK CHECK DATA:

PROFILER LEAKAGE RATE:	>30 seconds	(Must be >10 sec for 10 kPa pressure change)
------------------------	-------------	--

Leak Check Procedure Link

AS LEFT CHECK DATA

FLOW CHECK DATA:

AQS-1 Expected	Reference	Profiler	Profiler
Flow Rate	Flow Rate	Flow Rate	Flow Rate
(A)	(B)	Error LPM	Error Δ%
1.0 LPM	LPM		

LEAK CHECK DATA:

PROFILER LEAKAGE RATE:	seconds	(Must be > 10 sec for 10 kPa pressure change
------------------------	---------	--

Comments:

Technician: Rob Bienenstein

QA Review: Kenkeyster

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:				Unadjusted Cal. X		Adjusted Cal.		
Network: City of Detroit		Site:	MTMS L	ab	Date:	7/14/	21	
Time Off-Line:		12:13 EDT	Time On-Line:	14:06 E	DT	Technician:	Dennis W	eyburne

	Analyzer Model:	Aeroqual AQS-1	S/N:	1480	Last Cal:	6/16/21
Calibration	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	2,000
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.4	
GAIN	1.292	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Re	sponse	Δ%			
Calibrator Ga	Calibrator Gas Channel		Calibrator Air Channel		Observed f	rom AQS-1	(Observed			
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL		
0.0490	0.0491	3.7510	3.7651	398.4	414.3	0.4	4.0%			
0.0323	0.0324	4.9677	4.9887	199.7	205.7	0.3	3.0%			
0.0161	0.0162	4.9839	5.0053	99.8	100.4	0.6	0.6%			
0.0081	0.0082	4.9919	5.0139	50.5	48.3	0.1	-4.4%			
OFF	OFF	5.0000	5.0150	0.0	-0.6	0.3				
	Linear Regression Analysis:									
Slope:	Slope: 1.045744 Int			-2.906901	Corr. C	oefficient (r):	0.999	957		

NOTES:

1. The NO2 sensor zero response should be 0.0 ppb ± 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than ± 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb ± 0.2 ppb.

3. The NO2 sensor SPAN response should be 400 ppb ± 20 ppb (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ±20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb ± 20 ppb.

Comments:

Unadjustedcalibration post-deployment.

Technician: *Dennis Weyburne*

QA Review: Kenkeysters

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit		Site:	: MTMS Lab		Date: 7/27/21		27/21
Time Off-Lir	ne: 13:17EDT		Time On-Line:	16:03 EDT		Technician: Denis Weyburr		Weyburne
		Analyzer Model:	Aeroqual AQS-1	S/N:	1480	Last Cal:		7/12/21
Calibration	(Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:		12/29/20
Equipment Info.		Zero Air Model No:	Teledyne API	S/N:	n/a		Cert Date:	n/a
		Gas Supplier:	AirGas	Cyl. Conc. (PPM):	49.33	Cyl. Pr	essure (PSIG)	2,000
								-

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	
GAIN	1.673	

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator	Observed VOC					
Calibrator (Gas Channel	Calibrator	Air Channel	Known VOC	Response from AQS-1		Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0130	0.00	-0.01	0.00	-
0.0500	0.0501	4.9400	4.9698	0.49	0.45	0.00	-8.6%
0.0500	0.0501	2.4493	2.4656	0.98	0.93	0.00	-5.3%

"AS LEFT" (ADJUSTED) TEST DATA

	Calibrator	Observed VOC					
Calibrator	Gas Channel	Calibrator	Air Channel	Known VOC Response from AQS-1	rom AQS-1	Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
							-

NOTES:

1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than \pm 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.

3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 0.0 ppm ± 1 ppm.

Comments:

Unadjusted calibration post-deployment.

Technician: Dennis Weyburne

QA Review: Kenkeyster

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:				Unadjusted Cal.	Х		Adjusted Cal.	
Network:	Network: City of Detroit		Site:	MTMS I	₋ab	Date:	7/27/	/21
Time Off-Line:		16:00 EDT	Time On-Line:	17:57 E	DT	Technician:	Kevin Ru	ıggiero

	Analyzer Model:	Aeroqual AQS-1	S/N:	1480	Last Cal:	7/14/21
Calibration	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	2,000
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.4	
GAIN	1.292	

	Calibrato	or Flow and T	est Gas Data		NO ₂ Re	sponse	Δ%			
Calibrator Ga	Calibrator Gas Channel		Calibrator Air Channel		Observed f	rom AQS-1	(Observed			
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL		
0.0490	0.0491	3.7510	3.7719	397.7	407.4	2.0	2.4%			
0.0323	0.0324	4.9677	4.9920	199.6	207.0	0.4	3.7%			
0.0161	0.0162	4.9839	5.0053	99.8	102.7	0.3	2.9%			
0.0081	0.0082	4.9919	5.0136	50.5	48.2	0.3	-4.6%			
OFF	OFF	5.0000	5.0150	0.0	-0.2	0.7				
	Linear Regression Analysis:									
Slope:	Slope: 1.029285			-0.878629	Corr. C	oefficient (r):	0.999	920		

NOTES:

1. The NO2 sensor zero response should be 0.0 ppb ± 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than ± 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.

2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb ± 0.2 ppb.

3. The NO2 sensor SPAN response should be 400 ppb ± 20 ppb (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ±20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.

4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb ± 20 ppb.

Comments:

Unadjusted calibration post-deployment.

Technician: *Dennis Weyburne*

QA Review: Kenkeysters

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are:	X Scheduled Unscheduled (If unscheduled, explain reason why in "Comments" Section)					
Network:	City of Detroit (Amazon)	Site:	Fairgrounds	Date of Checks:	7/27/2021	
Operator:	Rob Bienenstein			Time Off-Line:	13:33:00 AN EST	
AEROQUAL QS-1 S/N 1480			Time On-Line:	13:59:00 AN EST		

Reference Standards:

Iow Standard: Aeroqual 0-5 LPM Rotometer	S/N# n/a	Cert Date: n/a
--	----------	----------------

AS FOUND CHECK DATA

Checks are "as found" checks. Adjust profiler flow or resolve leak and complete "as left" section below if any acceptability limits are exceeded or if any adjustments to the monitor are to be made.

FLOW CHECK DATA:

AQS-1 Expected Flow Rate (A)	Reference Flow Rate (B)	Profiler Flow Rate Error LPM (A-B)	Profiler Flow Rate Error Δ% (A-B) ÷ A x 100			
1.0 LPM	1.0 LPM	0.00	0.0%			
Flow Check Procedure Link Acceptability Limits: The expected AQS-1 Particle Profiler Flow Rate is 1.0 LPM ± 0.05 LPM (between 0.95 LPM and 1.05 LPM) or ≤±5%.						

LEAK CHECK DATA:

PROFILER LEAKAGE RATE:	>30 seconds	(Must be >10 sec for 10 kPa pressure change)
------------------------	-------------	--

Leak Check Procedure Link

AS LEFT CHECK DATA

FLOW CHECK DATA:

AQS-1 Expected	Reference	Profiler	Profiler
Flow Rate	Flow Rate	Flow Rate	Flow Rate
(A)	(B)	Error LPM	Error Δ%
1.0 LPM	LPM		

LEAK CHECK DATA:

PROFILER LEAKAGE RATE:	seconds	(Must be > 10 sec for 10 kPa pressure change
------------------------	---------	--

Comments:

Technician: Rob Bienenstein

QA Review: Kenkeyster

MONTROSE AIR QUALITY SERVICES LLC

B: Calibration Certification Sheets

Calibration

Calibration Certificate

CertificateNo.	388679	Sold To:	Montrose Air Quality Services, LLC
Product	200-530+ Medium Defender 530+ Mediun Flow	n	45 US Hwy 46 East, Suite 601
Serial No.	153584		Pine Brook, NJ 07058
Cal. Date	08-May-2020		US

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

Technician	Lilianna Malinowska		Lab. Pressure747 mLab. Temperature22.1 °	5	
Instrument Reading	Lab Standard Reading	Deviation	Allowable Devi	ation As Received	
4807.28 sccm	4794.46 sccm	0.27%	1.00%	In Tolerance	
1088.33 sccm	1089.94 sccm	-0.15%	1.00%	In Tolerance	
289.44 sccm	290.04 sccm	-0.21%	1.00%	In tolerance	
21.5 °C	21.9 °C	-	± 0.8°C	In Tolerance	
747 mmHg	746 mmHg	-	± 3.5 mmHg	In Tolerance	

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-24	100439	30-Mar-2020	30-Mar-2021
Percision Thermometer	305460	08-Oct-2019	07-Oct-2020
Precision Barometer	2981392	19-Jul-2019	18-Jul-2020

NVLAP Lab Code 200661-0 Calibration

As Shipped Calibration Data

Certificate No Technician	388679 Lilianna Malinowska		Lab. Pressure Lab. Temperature	747 mmHg 22.1 °C		
Instrument Reading	Lab Standard Reading	Deviation	Allowa	ble Deviation	As Shipped	
4790.5 sccm	4802.74 sccm	-0.25%	1.00%	,	In Tolerance	
1089.45 sccm	1091.86 sccm	-0.22%	1.00%		In Tolerance	
290.28 sccm	290.92 sccm	-0.22%	1.00%		In Tolerance	
22.8 °C	22.8 °C	-	± 0.8°	с	In Tolerance	
747 mmHg	747 mmHg	-	± 3.5 i	mmHg	In Tolerance	

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-24	117991	11-Feb-2020	10-Feb-2021
Percision Thermometer	305460	08-Oct-2019	07-Oct-2020
Precision Barometer	2981392	19-Jul-2019	18-Jul-2020

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

By:

Mohammed Aziz Director of Engineering Mesa Laboratories, Inc., Butler, NJ

TAPI T700 MFC CALIBRATION

PPLICATION INFORMATION:

	INFORMATION		-		1				
Calibrator M		API T700; SN 6	9		NETWORK:		etroit PAMS	SITE:	MTMS
Calibration S		MTMS Site			Test Date:	12/29/2020			
	Pressure (Pa, in r		740.0			Jennis Weyburn			
	rd Model: Mesa		530+		Air Temp. (Ta, i		27.4	(=deg. K):	300.6
-	rd Base S/N:	Not Applicable			Flow Cell Mode	I NO:	530+ High Flow	1	
Certification	Date:	Not Applicable			Flow Cell S/N: Flow Cell Certif	ination Data:	153452 5/8/2020		
				1	Flow Cell Certil				
Check One		X	Air Channe			Gas Chanr			
(X)		Fle	ow Meter Readir	ngs		Average	STD DEV	Flow Rate	Δ%
MFC Drive			s of 10 averaged			Flow	F1F5	From Previous	("New Cal Flow"
Voltage	F ₁	F ₂	F ₃	F ₄	F ₅	(F1F5)		<u>Cal</u>	Vs
(mVDC)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(in <u><i>SCCM</i></u>)	(SLPM)	"Prev. Cal Flow")
5000	10.6340	10.6400	10.6380	10.6400	10.6350	10.637	2.8	10.657	0.2%
4750	10.1050	10.1020	10.0960	10.0950	10.0870	10.097	7.0	10.101	0.0%
4500	9.5920	9.5815	9.5763	9.5981	9.5759	9.585	9.9	9.573	-0.1%
4250	8.9901	8.9977	8.9954	8.9918	8.9909	8.993	3.2	9.030	0.4%
4000	8.4595	8.4595	8.4599	8.4604	8.4516	8.458	3.7	8.478	0.2%
3750	7.9298	7.9289	7.9244	7.9223	7.9254	7.926	3.1	7.955	0.4%
3500	7.3934	7.3891	7.3861	7.3909	7.3974	7.391	4.3	7.406	0.2%
3250	6.8480	6.8463	6.8474	6.8470	6.8487	6.847	0.9	6.872	0.4%
3000	6.3225	6.3215	6.3208	6.3174	6.3198	6.320	1.9	6.332	0.2%
2750	5.7859	5.7866	5.7889	5.7868	5.7835	5.786	1.9	5.800	0.2%
2500	5.2548	5.2542	5.2557	5.2541	5.2538	5.255	0.8	5.264	0.2%
2250	4.7312	4.7316	4.7310	4.7321	4.7311	4.731	0.5	4.738	0.1%
2000	4.2061	4.2039	4.2018	4.1994	4.1999	4.202	2.8	4.203	0.0%
1750	3.6657	3.6700	3.6710	3.6695	3.6697	3.669	2.0	3.673	0.1%
1500	3.1310	3.1318	3.1317	3.1316	3.1320	3.132	0.4	3.140	0.3%
1250	2.6006	2.6011	2.6014	2.6026	2.6023	2.602	0.8	2.609	0.3%
1000	2.0700	2.0706	2.0695	2.0687	2.0696	2.070	0.7	2.075	0.2%
750	1.5436	1.5450	1.5450	1.5466	1.5465	1.545	1.2	1.548	0.2%
500	1.0150	1.0150	1.0150	1.0150	1.0150	1.015	0.0	1.015	0.0%
250	0.48082	0.48108	0.48340	0.48327	0.48351	0.482	1.3	0.483	0.0%
SLOPE:	0.002135607		INTERCEPT:	-0.068705011	CORRELAT	ION COEFF (r):		0.999983645	

Comments:

echnician:

Dennis Weyburne

12/29/2020

(signature)

TAPI T700 MFC CALIBRATION

CALIBRATOR APPLICATION INFORMATION:

Calibrator Model/S/N:	TAPI T700; SN 69	NETWORK: M	larathon Detroit PAMS	SITE:	MTMS
Calibration Site:	MTMS Site	Test Date:	12/29/2020		
Barometric Pressure (Pa, in mmHg):	731.0	Calibrated by:	Denr	nis Weyburne	
Flow Standard Model:	Mesa Labs Defender 530+	Air Temp. (Ta, in deg.	C):24.4 25.0	(=deg. K):	298.2
Flow Standard Base S/N:	Not Applicable	Flow Cell Model No:		530+ Low Flow	
Base Certification Date:	Not Applicable	Flow Cell S/N:		153435	
		Flow Cell Certification	Date:	5/8/2020	
Check One:	Air Channel	x Gas	Channel		

(X) MFC Drive	Drive (5 sets of 10 averaged flows)				Average Flow	STD DEV F1F5	Flow Rate From Previous	∆% ("New Cal Flow"	
Voltage	F ₁	F ₂	F ₃	F_4	F ₅	(F1F5)		<u>Cal</u>	Vs
(mVDC)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(in <u>SCCM</u>)	(SLPM)	"Prev. Cal Flow")
5000	0.05390	0.05399	0.05399	0.05399	0.05399	0.0540	0.04	0.0540	0.0%
4750	0.05139	0.05138	0.05136	0.05140	0.05141	0.0514	0.02	0.0514	0.0%
4500	0.04866	0.04868	0.04867	0.04870	0.04866	0.0487	0.02	0.0487	0.1%
4250	0.04596	0.04597	0.04598	0.04599	0.04599	0.0460	0.01	0.0459	-0.1%
4000	0.04325	0.04327	0.04327	0.04329	0.04330	0.0433	0.02	0.0432	-0.1%
3750	0.04059	0.04056	0.04058	0.04057	0.04051	0.0406	0.03	0.0406	0.1%
3500	0.03791	0.03789	0.03790	0.03790	0.03791	0.0379	0.01	0.0380	0.3%
3250	0.03522	0.03524	0.03524	0.03524	0.03524	0.0352	0.01	0.0353	0.3%
3000	0.03259	0.03258	0.03258	0.03259	0.03259	0.0326	0.01	0.0327	0.2%
2750	0.02990	0.02991	0.02992	0.02991	0.02993	0.0299	0.01	0.0300	0.3%
2500	0.02724	0.02724	0.02725	0.02724	0.02724	0.0272	0.00	0.0274	0.5%
2250	0.02462	0.02462	0.02463	0.02454	0.02460	0.0246	0.04	0.0247	0.3%
2000	0.02190	0.02188	0.02189	0.02190	0.02191	0.0219	0.01	0.0220	0.3%
1750	0.01917	0.01918	0.01918	0.01918	0.01918	0.0192	0.00	0.0193	0.4%
1500	0.01644	0.01644	0.01643	0.01641	0.01643	0.0164	0.01	0.0165	0.6%
1250	0.01370	0.01369	0.01369	0.01369	0.01369	0.0137	0.00	0.0138	0.6%
1000	0.01098	0.01096	0.01097	0.01091	0.01092	0.0109	0.03	0.0110	0.5%
750	0.00819	0.00818	0.00819	0.00818	0.00819	0.0082	0.01	0.0082	0.5%
500	0.00536	0.00533	0.00535	0.00535	0.00538	0.0054	0.02	0.0054	1.0%
250	0.00250	0.00250	0.00250	0.00250	0.00250	0.0025	0.00	0.0025	0.0%
SLOPE:	0.000011 INTERCEPT: 0.0002130			CORRELAT	ON COEFF (r):	0.999980			

Comments:

Technician:

Dennis Weyburne

Airgas Specialty Gases Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: TRACEABILITY STANDARD Part Number:

Cylinder Number: Laboratory:

X02NI99T33W0004 D068357 124 - Chicago (SAP) - IL Reference Number: 54-402006473-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

32.0 CF 2218 PSIG 660 Jan 26, 2021

Expiration Date: Jan 26, 2024

This cylinder has been analytically certified as directly traceable to NIST with a total analytical uncertainty as stated below with a confidence level of 95%, in accordance with Airgas ISO procedures. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder Below 100 psig.						
ANALYTICAL RESULTS						
Compo	nent	Requeste Concentr		Actual Concentration	Total Relat Uncertaint	
NITROG NITROG	EN DIOXIDE EN	30.00 PPM Balance		30.95 PPM	+/- 1% NIST	Traceable
CALIBRATION STANDARDS						
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
GMIS	401438584104	EB0120492	48.18 PPM NITRO	GEN DIOXIDE/NITROGEN	+/- 1.8%	Nov 01, 2022
ANALYTICAL EQUIPMENT						
Instrum	ent/Make/Model		Analytical Princip	le Last	Multipoint Calibr	ation
MKS FTI	R NO2 017707558		FTIR	Jan 0	7, 2021	

Triad Data Available Upon Request

PERMANENT NOTES: OXYGEN ADDED TO MAINTAIN STABILITY

Approved for Release

Page 1 of 54-402006473-1

GASCO AFFILIATES, LLC.

320 Scarlet Blvd. Oldsmar, FL 34677 (800) 910-0051 fax: (866) 755-8920 www.gascogas.com

CERTIFICATE OF ANALYSIS

Date: January 13, 2021 Order Number: 1199610 Lot Number: 304-402007938-1 Customer: Cal Gas Direct Inc.

Use Before: 01/13/2025

Component	Requested Concentration	Analytical Result (+/- 2%)
Isobutylene	1 PPM	0.99 PPM
Air	Balance	Balance

Cylinder Size: 1.2 Cu. Ft. Contents: 34 Liter

Valve: CGA 600 Pressure: 500 psig

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/ or N.I.S.T. Gas Mixture reference materials.

Analyst:

Often Eakins After Eakins

GASCO AFFILIATES, LLC.

320 Scarlet Blvd. Oldsmar, FL 34677 (800) 910-0051 fax: (866) 755-8920 www.gascogas.com

CERTIFICATE OF ANALYSIS

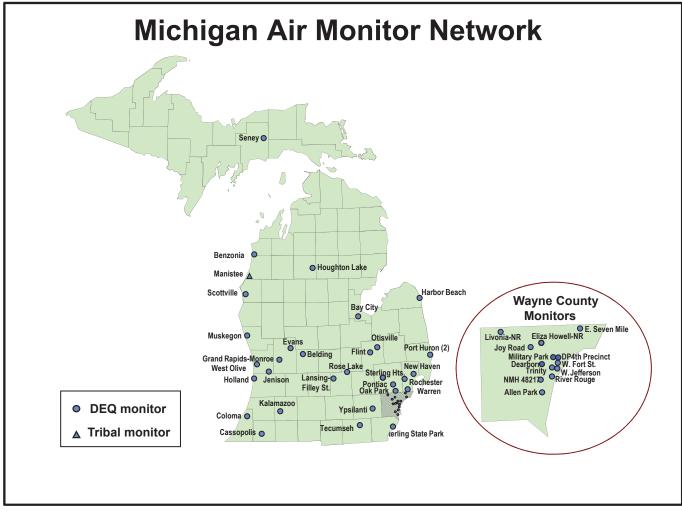
Date: January 13, 2021 Order Number: 1199610 Lot Number: 304-402007939-1 Customer: Cal Gas Direct Inc.

Use Before: 01/13/2025

Component	Requested Concentration	Analytical Result (+/- 2%)		
Isobutylene Air	3 PPM Balance	3.1 PPM Balance		

Cylinder Size: 1.2 Cu. Ft. Contents: 34 Liter

Valve: CGA 600 Pressure: 500 psig


Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/ or N.I.S.T. Gas Mixture reference materials.

Analyst:

Often Eakins After Eakins

C: State Monitor Map

Updated June 2019