2990 W. Grand Blvd., Suite M-10 Detroit, MI 48202

Phone: 313-237-3900 Fax: 313-237-3909

Mr. Hosam Hassanien, PG, CPG City of Detroit Environmental Affairs 2 Woodward Avenue – CAYMC, Suite 401 Detroit, MI 48226 June 8, 2021 NTH Project No. 74-200457-05

RE: Ambient Air Quality Monitoring – 1st Construction Phase Monitoring Report Proposed Amazon Distribution Center Detroit, Michigan

Dear Mr. Hassanien:

The City of Detroit (City) recently completed a property transaction for a new Amazon Fulfillment Center to be constructed on a 137-acre parcel at the former State Fairgrounds property located at 1120 W. State Fair Avenue in Detroit, Michigan. The City contracted NTH Consultants, Ltd. (NTH) to conduct ambient air quality monitoring at the proposed Amazon Distribution Center site (Site).

The monitoring program consists of siting localized monitors at an upwind and downwind locations to measure concentrations of particulate matter (PM_{10} and $PM_{2.5}$), nitrogen oxide (NO_x , as NO_2) and volatile organic compounds (VOCs), and evaluate air quality from the Site during three (3) distinct phases:

- Pre-development baseline period
- Construction phase
- Post-construction facility operation

Pre-Development Baseline Period (Completed)

NTH's Baseline Monitoring Report, dated May 7, 2021, presented ambient concentrations prior to significant construction activities at the Site. The baseline period included monitoring data collected by Montrose Air Quality Services, LLC (MAQS), NTH's subconsultant for on-site air monitoring services, from January 22, 2021 through March 5, 2021, and was supplemented with monitoring data collected by the Site developer's consultant (Langan) from November 13, 2020 through December 2, 2020. The purpose of the Baseline Monitoring Report was to establish an ambient background concentration for each pollutant and use that concentration as a baseline whereas concentrations measured above these levels during construction would trigger the contractor to employ additional mitigation efforts to reduce pollutant concentrations.

The concentrations presented in Table 1 were presented in the Baseline Monitoring Report and presented pollutant concentrations prior to start of significant construction activities. Each concentration is also compared to the applicable National Ambient Air Quality Standards (NAAQS) protective of public health and the environment.

Table 1 – Site-Specific Baseline Concentrations
Pre-Development Baseline Period

Pollutant	Operator	Monitor ¹	Baseline Concentration	Date of Baseline Concentration	NAAQS	Units
PM ₁₀	Langan	ML2	47	11/25/2020	150	$\mu g/m^3$
PM _{2.5}	Langan	ML2	22	11/25/2020	35	μg/m³
NO ₂	MAQS	Unit 1480	52	1/30/2021	100	ppb
VOC	Langan	ML1	0.11	11/14/2020	NA ²	ppm

¹ Baseline Monitoring included two (2) Site monitors operated by MAQS for NTH from January 22 through March 5, 2021 and identified as Unit 1479 (upwind location) and Unit 1480 (downwind location), as well as monitoring data provided by Hillwood Development Company (HDC), the project developers, for the period November 13, 2020 through December 2, 2020 from five (5) monitoring locations at the project Site and identified as ML1, ML2, ML3, ML4 and ML5.

Construction Phase Monitoring

This letter and enclosed report present the results of the 1st construction phase monitoring event that was conducted for the one (1)-week period of April 14 through April 21, 2021. The goal of construction phase monitoring is to collect concentration data of target air pollutants during construction activities consisting of installation of fencing, striping paved surfaces, concrete work, and steel construction, and assess whether additional mitigation efforts are warranted to reduce pollutant concentrations to below baseline levels.

The enclosed 1st Construction Phase Monitoring Report describes the monitoring program, objectives, Site overview, monitor locations and equipment, monitoring results, and an overview of data quality assurance.

The report includes monitoring data from two (2) available sources, including:

- Two (2) Site monitors operated by MAQS for NTH during the monitoring period (April 14 through April 21, 2021) and identified as Unit 1479 (upwind location) and Unit 1480 (downwind location).
- Nearby off-site monitors operated by Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the MAQS monitoring period.

As part of this air monitoring program, MAQS collected one (1) week of air monitoring data for NO_x (as NO_2), PM_{10} and $PM_{2.5}$, and VOCs at two (2) monitors, along with prevailing wind directions and speeds (vectors).

The City anticipates that development of the proposed Amazon Distribution Center may result in direct and fugitive air emissions from construction activities, as well as future operations. Sources of NO_x and VOC emissions related to construction may include vehicular traffic and diesel engines (over-the-road and non-road heavy duty construction). Potential emissions of PM_{10} and

² NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NO_x and VOCs in certain ambient conditions (typically hot, sunny weather)

PM_{2.5} related to construction may include fugitive dust associated with vehicular traffic, soil handling, material storage piles, concrete batching, and abrasives blasting.

The monitors, designated as Unit 1479 and Unit 1480, were located on opposite sides of the Site and both stations also collected meteorological data. The upwind monitor (Unit 1479) measures pollutant concentrations that have not blown across the Site and should be free from potential impacts of on-site development activity and is representative of local area background concentrations.

Results of Construction Phase Monitoring

As presented below and in the enclosed report for monitoring conducted April 14 through April 21, 2021, concentrations of NO_x (as NO₂) and VOC are within the baseline concentrations as well as the associated 1-hour NAAQS of 100 ppb for NO₂. ¹

Monitored PM_{10} and $PM_{2.5}$ concentrations are within the 24-hour NAAQS of 150 $\mu g/m^3$ and 35 $\mu g/m^3$, respectively. However, on April 19, 2021, daily concentrations of $PM_{2.5}$ and PM_{10} at downwind monitor Unit 1480 exceeded the baseline concentrations, as summarized in Table 2. The elevated PM concentrations measured at Unit 1480 coincided with strong southwesterly winds and were consistent with elevated concentrations observed at nearby off-site EGLE Dearborn monitors on April 19, 2021, indicative of local meteorological factors (sustained elevated wind speeds). Note that particulate matter can become airborne when wind speeds are elevated regardless of on-site construction activities.

	•		0 1	<i>9</i> 1	,	
Pollutant	Maximum Concentration	Monitor	Date of Maximum Concentration	Baseline Concentration	NAAQS	Units
PM_{10}	83.4	Unit 1480	4/19/2021	47	150	$\mu g/m^3$
PM _{2.5}	24.8	Unit 1480	4/19/2021	22	35	$\mu g/m^3$
NO ₂	34.7	Unit 1480	4/19/2021	52	100	ppb
VOC	0.01	Unit 1480	4/19/2021	0.11	NA^1	ppm

Table 2 – Summary of Air Monitoring from April 14 through April 21, 2021

On April 20, 2021, NTH notified the construction contractor Gray regarding elevated particulate matter concentrations observed on April 19, 2021 and recommended that they immediately implement appropriate corrective measures to prevent such exceedances during construction. Gray indicated that they are actively watering/wetting the Site to help mitigate dust issues.

As neither NO₂ nor VOC were elevated, we conclude that elevated wind speeds in excess of 30 mph at times was the primary reason that concentrations of PM_{2.5} and PM₁₀ were above the baseline values. The monitored PM₁₀ and PM_{2.5} were likely due to dust caused by the dry, windy

¹ NAAQS have not been established for VOC. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NO_x and VOCs in certain ambient conditions (typically hot, sunny weather).

Scoller

Bhushan C. Modi

Project Manager

conditions and likely related to moving vehicles and conducting work on storm sewers near the monitor.

In summary, the data collected during this air monitoring event are not indicative of a threat to public health or unusual concentrations of the analyzed parameters.

We appreciate this opportunity to be of service to you. If you have questions or need additional information, please contact us at 248-662-2740.

Sincerely,

NTH Consultants, Ltd.

Rhiana C. Dornbos, P.E.

Rhiana C. Dombro

Sr. Project Engineer

RCD/BCM/clm

Attachments

1st CONSTRUCTION PHASE MONITORING REPORT PROPOSED AMAZON DISTRIBUTION CENTER (FORMER MICHIGAN STATE FAIRGROUNDS) CITY OF DETROIT DETROIT, MICHIGAN

Prepared For:

NTH Consultants, Ltd.

2990 W. Grand Blvd., Suite M-10 Detroit, MI 48202

Prepared By:

Montrose Air Quality Services, LLC

45 U.S. 46, Suite 601 Pine Brook, NJ 07058

Document Number: 011AA-5509-RT-1

NTH Project Number: 74-200457-03

Monitoring Period: April 14 through April 21, 2021

Submittal Date: June 3, 2021

Table of Contents

PROJECT OVERVIEW	1
Background Objectives Potential Sources Site Overview Figure 1-A – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Figure 1-B – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Property and Nearby MI EGLE Monitoring Stations Monitoring Equipment. Discussion of Results	1 3 3 3
METEOROLOGICAL DATA COLLECTED	7
FIGURE 2-A – Wind Rose From 1479 Monitor	7
FIGURE 2-B – Wind Rose From 1480 Monitor	8
POLLUTANT DATA COLLECTED	9
Figure 3 – PM_{10} Data	.10 .11
DATA QUALITY ASSURANCE/QUALITY CONTROL	.13
Quality Assurance/Quality Control	.13
SIGNATURE PAGE	.14
APPENDIX	15

- A: Quality Assurance Logs B: Calibration Certification Sheets C: State Monitor Map

Project Overview

Background

NTH Consultants, Ltd. (NTH) contracted Montrose Air Quality Services, LLC (Montrose) to conduct an ambient air monitoring program on behalf of the City of Detroit at the proposed Amazon Distribution Center located at the former Michigan State Fairgrounds in Detroit, Michigan. The program is conducted to monitor for a mixture of pollutants that may originate from construction activities as well as future Site operations including vehicular traffic, surface attrition, and dust emissions.

The Baseline Monitoring Report presented ambient concentrations prior to significant Site construction activities. The baseline period included monitoring data collected by Montrose for the period January 22, 2021 through March 5, 2021 and was supplemented with monitoring data collected by the Site developer during the period November 13, 2020 through December 2, 2020. The purpose of the Baseline Monitoring report was to establish an ambient background concentration for each pollutant and use that concentration as a baseline whereas concentrations measured above these levels during construction would trigger the contractor to employ additional mitigation efforts to reduce pollutant concentrations to below baseline.

This report includes data from monitors operated by Montrose and Michigan Department of Environment, Great Lakes, and Energy (EGLE) during the monitoring period commencing on April 14 and concluding on April 21, 2021.

Objectives

The specific objectives are to measure ambient concentrations of the following parameters at two (2) monitoring locations:

- Particulate Matter (PM₁₀) of diameter equal to or less than 10 microns
- Particulate Matter (PM_{2.5}) of diameter equal to or less than 2.5 microns
- Nitrogen Dioxide (NO₂)
- Volatile Organic Compounds (VOC)
- Meteorological parameters (i.e., wind speed, wind direction, temperature, relative humidity, and barometric pressure)

Potential Sources

Sources of NO₂ and VOC emissions related to construction include vehicular traffic and diesel engines (over-the-road and non-road, heavy-duty construction). Potential emissions of PM₁₀ and PM_{2.5} related to construction may include the sources identified above for NO_x and VOC emissions and also fugitive dust associated with vehicular traffic, soil handling, material storage piles, concrete batching, and abrasives blasting.

Operational Staff and Contacts

Facility Information

Monitoring Location: Proposed Amazon Distribution Facility

Former Michigan State Fairgrounds

1120 W. State Fair Avenue

Detroit, MI 48203

Monitoring Program Coordinator

NTH Consultants, Ltd.

2990 W. Grand Blvd., Suite M-10

Detroit, MI 48202

Project Contacts: Mr. Bhushan Modi

Role: Project Manager

Company: NTH Consultants, Ltd.

Telephone: 248-662-2740

Email: bmodi@nthconsultants.com

Monitoring Team Contact Information

Testing Firm: Montrose Air Quality Services, LLC (Montrose)

Contact: David Cummings
Title: District Manager
Telephone: 201-213-2913

Email: dcummings@montrose-env.com

Contact: Kevin Ruggiero
Title: Project Manager
Telephone: 973-417-6487

Email: kruggiero@montrose-env.com

Contact: Jeffrey Peitzsch Title: Shop Coordinator Telephone: 313-213-4816

Email: jbpeitzsch@montrose-env.com

Site Overview

The Site air quality monitoring was performed at the proposed Amazon Distribution Center (former Michigan State Fairgrounds) property located at 1120 W State Fair Avenue in Detroit, MI. This area was purchased by Hillwood Development Company, LLC (Hillwood) who will be demolishing the existing structures onsite and building a large warehouse that will be occupied by an Amazon distribution center. The two (2) Site monitor locations are identified in Figure 1-A below.

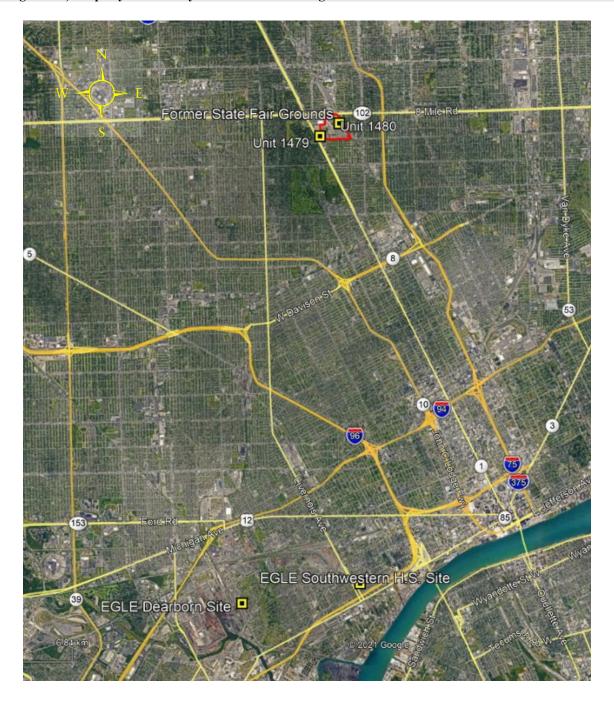

Figure 1-A – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Property

Figure 1-B is an aerial view of the two monitoring Site locations at the proposed Amazon Distribution Center (former Michigan State Fairgrounds) property and two nearby air monitoring stations maintained by the Michigan Department of Environment, Great Lakes, and Energy (EGLE). Monitoring data available from the two nearby EGLE monitoring stations are intercompared in this report with corresponding monitoring data reported from the monitors operated at the former Michigan State Fairgrounds property.

Figure 1-B – Monitor Locations at the Proposed Amazon Distribution Center (Former Michigan State Fairgrounds) Property and Nearby MI EGLE Monitoring Stations

Monitoring Equipment

The air monitoring at the proposed Amazon Distribution Center (former Michigan State Fairgrounds) was performed using an AQS1 Urban Air Quality Monitor manufactured by Aeroqual. In the device, sampling occurs actively by pulling in ambient air via a pump and the air sample passing over the surface of each sensor. Each device used in this project is powered by deep-cycle batteries charged by solar photovoltaic panels and transmits data via cellular signal. Monitoring was conducted for the constituents listed in Table 1

Table 1 - Pollutants Monitored

Air Pollutant/Parameter Category	Principle of Operation
PM ₁₀ and PM _{2.5}	Laser Scattering
NO ₂	Electrochemical
VOC	Photoionization
Wind Speed, Wind Direction, Temperature, Relative Humidity, Barometric Pressure	Sonic Anemometer and Various

The sampled particles are measured by the physical principle of light scattering. Each single particle is illuminated by a defined laser light and each scattering signal is detected at an angle of 90° by a photo diode. In accordance with the Mie theory, each measured pulse height is directly proportional to the particle size, where each pulse is classified in an electronic register of 32 different size channels.

Electrochemical sensors measure the concentration of a specific gas within an external circuit via oxidation or reduction reactions. These reactions generate the positive or negative current flow through the external circuit. An electrochemical sensor is made up of a working counter and reference electrode. All of these components are situated inside of a sensor housing along with a liquid electrolyte that is specific to the compound of interest.

A Photoionization Detector (PID) sensor contains a lamp that produces photons that carry enough energy to break molecules into ions. The PID will only respond to molecules that have an ionization energy at or below the energy of the lamp; the PID used on this project employs a 10.6 electron-volt lamp. The produced ions then generate an electrical current that is measured as the output of the detector.

All operation and maintenance procedures contained in the monitoring plan dated January 10, 2021 were followed for the continuous monitoring equipment.

Discussion of Results

The results of PM₁₀, PM_{2.5}, NO₂, and VOC monitoring data are presented in Figures 3 through 6 in this report. These figures also include data from nearby air monitoring stations maintained by the Michigan Department of Environment, Great Lakes, and Energy (EGLE) for the same time period. The EGLE data contained in this report are from monitors that are routinely subjected to calibration and maintenance. It should be noted that, as of the date of this report, the EGLE data have not yet been processed through EGLE final quality assurance procedures. The monitor locations for EGLE Sites can be found on the map provided in Appendix C (*State Monitor Map*).

The Clean Air Act requires EPA to establish National Ambient Air Quality Standards (NAAQS) for certain air pollutants considered harmful to public health and the environment. Air pollutants for which NAAQS are established include NO₂, PM_{2.5} and PM₁₀. NAAQS have not been established for VOCs. VOCs are considered precursors to the formation of ozone. Ozone is formed downwind by photochemical reaction of NO_x and VOCs in certain ambient conditions.

The graphed data shown in Figures 3 through 5 for these pollutants present measured concentrations for these pollutants collected during the monitoring period relative to the Baseline concentration and NAAQS Standard.

The NAAQS for NO₂, PM_{2.5}, and PM₁₀ were not exceeded during these monitoring periods.

Electronic records of all data and calibrations have been uploaded to the Montrose Data Server, where they will be archived for a period of at least three (3) years.

Meteorological Data Collected

Figures 2-A and 2-B present wind roses derived from the meteorological data collected from each of the two monitors operated at the former State Fairgrounds over the course of the monitoring period of 4/14/21 to 4/21/21. The wind rose presented in Figure 2-A is derived from wind speed and wind direction data collected from monitor 1479. The wind rose presented in Figure 2-B is derived from wind speed and wind direction data collected from monitor 1480.

Figure 2-A – Wind Rose From 1479 Monitor

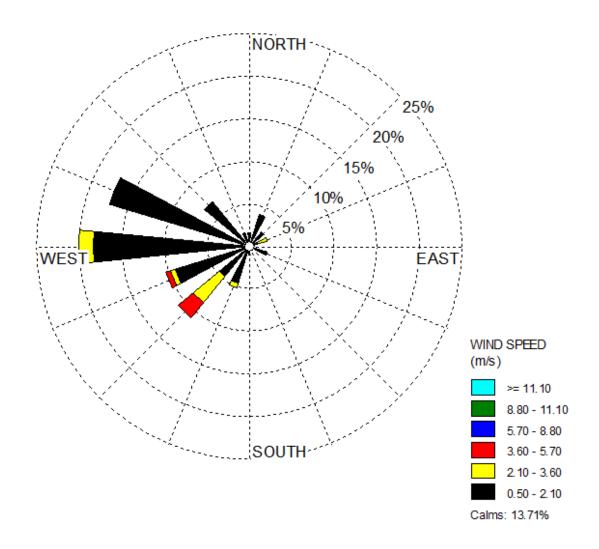
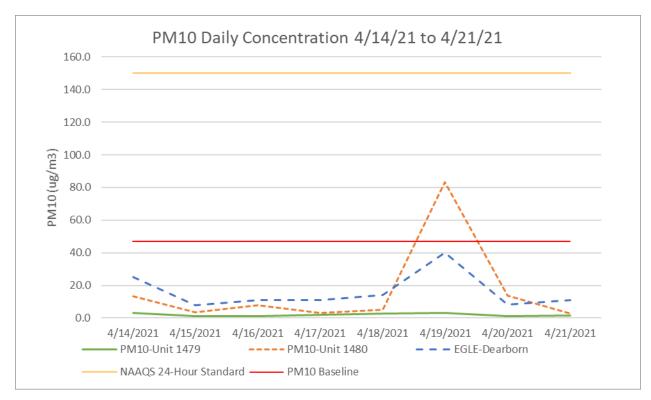



Figure 2-B – Wind Rose From 1480 Monitor

As is evident from the wind rose data, predominant winds were from the west and northwest during the monitoring period. Wind speeds recorded at monitor 1479 were generally very light; wind speeds recorded by monitor were generally light to moderate.



Pollutant Data Collected

Figure 3 – PM₁₀ Data

The graph below represents the ambient PM_{10} measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 4/14/21 to 4/21/21. This graph is a plot of the PM_{10} measurement data as averaged over each daily monitoring period. The daily averaging interval for PM_{10} data is consistent with the associated EPA primary and secondary PM_{10} NAAQS; a 24-hour (daily) averaged value of 150 micrograms per cubic meter ($\mu g/m^3$) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents the 24-hour PM_{10} NAAQS of 150 μ g/m³. The solid red line represents the baseline concentration established in the 1st Baseline Report. The PM_{10} monitor at the EGLE Dearborn Site is the closest state-operated PM_{10} monitor relative to the former Michigan State Fairgrounds property. Therefore, the graph below presents the 24-hour averaged data from the EGLE Dearborn continuous PM_{10} monitor for comparison to corresponding PM_{10} measurement data reported from the on-site monitors.

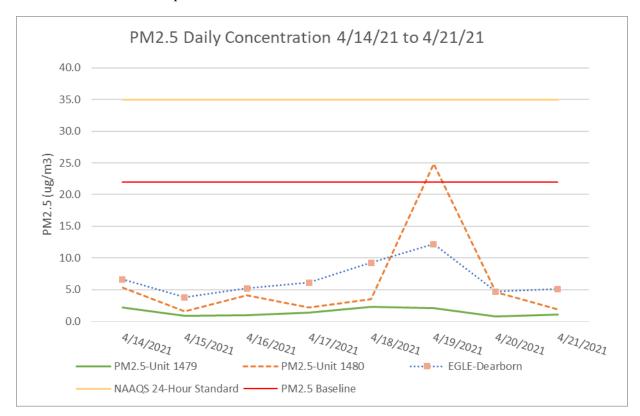


Figure 4 – PM_{2.5} Data

The graph below represents the ambient $PM_{2.5}$ measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 4/14/21 to 4/21/21. This graph is a plot of the $PM_{2.5}$ measurement data as averaged over each daily monitoring period. The daily averaging interval for $PM_{2.5}$ data is consistent with the associated EPA primary and secondary $PM_{2.5}$ NAAQS: A 24-hour (daily) averaged value of 35 micrograms per cubic meter ($\mu g/m^3$) not to be exceeded more than once per year on average over 3 years.

The solid yellow line represents the 24-hour PM_{2.5} NAAQS of 35 μg/m³. The solid red line represents the baseline concentration established in the 1st Baseline Report. The EGLE Oak Park monitoring Site is the nearest state-operated PM_{2.5} monitor relative to the former Michigan State Fairgrounds property. The EGLE Oak Park PM_{2.5} monitor is a 24-hour, filter-based sampler that collects a sample at 3-day intervals. Filter-based PM samples require gravimetric analysis at a laboratory; EGLE estimates that analytical results for the Oak Park PM_{2.5} filters will not be available until July 2021. Therefore, the graph below presents the 24-hour averaged data from the EGLE Dearborn continuous PM_{2.5} monitor for comparison to corresponding PM_{2.5} measurement data reported from the on-site monitors.

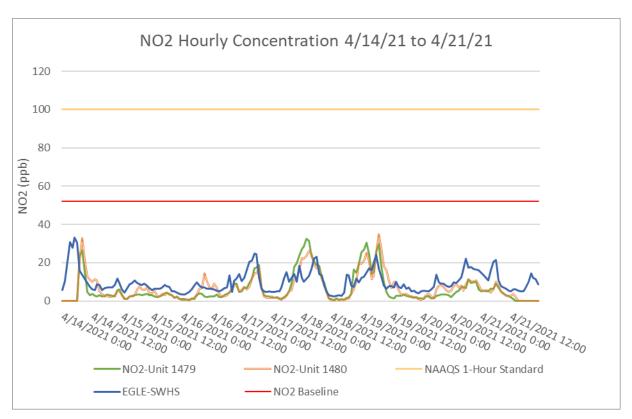


Figure 5 – NO₂ Data

The graph below represents the ambient NO₂ measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 4/14/21 to 4/21/21. This graph is a plot of the NO₂ measurement data as averaged over a period of one (1) hour. This is consistent with the associated EPA primary NO₂ NAAQS: A 1-hour averaged value of 100 parts-per-billion (ppb) not to be exceeded more than once per year on average over 3 years.

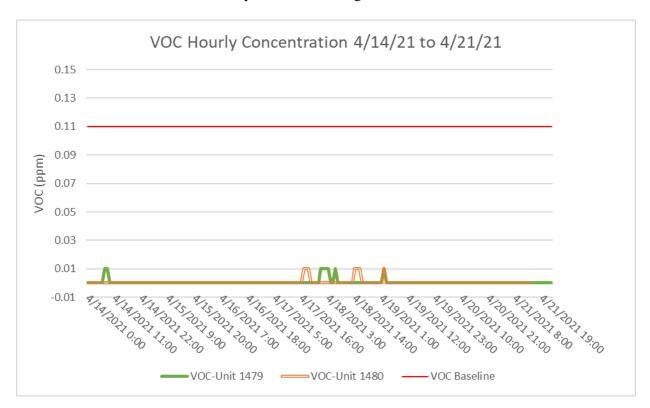

The solid yellow line represents the 1-hour NO₂ NAAQS of 100 ppb. The solid red line represents the baseline concentration established in the 1st Baseline Report. The NO₂ monitor at the EGLE Southwestern High School (SWHS) Site is the closest state-operated NO₂ monitor relative to the former Michigan State Fairgrounds property. Therefore, the graph below presents the 1-hour averaged data from the EGLE SWHS continuous NO₂ monitor for comparison to corresponding NO₂ measurement data reported from the on-site monitors.

Figure 6 – VOC Data

The graph below presents the ambient VOC measurement data collected at the former Michigan State Fairgrounds property during the monitoring period of 4/14/21 to 4/21/21. This graph is a plot of the VOC measurement data as averaged over a period of one (1) hour. The solid red line represents the baseline concentration established in the 1st Baseline Report. The EPA has not established a NAAQS for VOC. VOC data are not available from nearby EGLE monitoring Sites.

Data Quality Assurance/Quality Control

Quality Assurance/Quality Control

Quality assurance is a general term for the procedures used to ensure that a particular measurement meets the quality requirements for its intended use. Quality control of continuous analyzers consists of precision and span checks or flow verifications. Quality objectives were assessed via Site system audits.

All work performed by Montrose in support of this project follows the operating procedures described in the "Former Michigan State Fairgrounds Work Plan" dated 1/10/21.

All quality control data for the on-site monitors operated at the former Michigan State Fairgrounds property can be found in Appendix A to this report entitled "Quality Assurance Logs". Certificates of traceability for the calibration standards and equipment used in support of quality assurance checks are presented in Appendix B to this report entitled "Calibration Certification Sheets".

Signature Page

Prepared by:

Linda Quigley Data Manager

Montrose Air Quality Services LLC

Reviewed by:

David Cummings District Manager

Montrose Air Quality Services LLC

are Commings

Appendix

A: Quality Assurance Logs

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are: X	_Scheduled	-	_Unschedu	led (If unsch	neduled, explain ı	reason why ir	ı "Commen	ts" Section)
Network: City of D	etroit (Amazon)	Site:	Fairground	ds	Date of Checks: 4/12/2021			
Operator: Rob Bier	nenstein	-			Time Off-Line:		11:23	EST
AEROQUAL QS-1 S/N 1479					Time On-Line:		11:59	EST
Reference Standards:								
Flow Standard: Mesa De	efender 530+		S/N#	M153584		Cert Date:	5/8/2020	
	as found" checks cceptability limits				-			pelow
AQS-1 Expected Flow Rate (A)		erence w Rate (B)			Profiler Flow Rate Error LPM (A-B)		(4	Profiler Flow Rate Error Δ% A-B) ÷ A x 100
1.0 LPM		1.0	LPM		0.00			0.0%
	Acceptability Lir		-		article Profiler and 1.05 LPM)		is	
LEAK CHECK DATA: PROFILER LEAKAGE	E DATE:			>30	seconds	(Must be >1)	0 sec for 10) kPa pressure change)
Leak Check Procedure Link AS LEFT CHECK DATA FLOW CHECK DATA:	ZE NATE.					(Mast Se *)		o in a processio change,
AQS-1 Expected Flow Rate (A)		erence w Rate (B)			Profiler Flow Rate Error LPM			Profiler Flow Rate Error Δ%
1.0 LPM		(-)	LPM					
LEAK CHECK DATA:								
PROFILER LEAKAG	SE RATE:				seconds	(Must be > 1	0 sec for 1	0 kPa pressure change
Comments:								

Technician: Rob Bienenstein

QA Review: Kendeyster

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit	Site:	MTMS Lab	Date:	4/12/21
Time Off-Line:	12:04 EDT	Time On-Line:	13:14 EDT	Technician:	Dennis Weyburne

	Analyzer Model:	Aeroqual AQS-1	S/N:	1479	Last Cal:	3/12/21
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	GASCO #1-1	Cyl. Conc. (PPM):	0.99	Cyl. Pressure (PSIG)	200
	Gas Supplier:	GASCO #3-2	Cyl. Conc. (PPM):	3.10	Cyl. Pressure (PSIG)	250

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)	
OFFSET	0.00	0.00	
GAIN	1.774	1.422	

"AS FOUND" (UNADJUSTED) TEST DATA

Calibrator Flow and Test Gas Data						ed VOC	
Calibrator (Calibrator Gas Channel		Calibrator Air Channel		Response f	rom AQS-1	Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0130	0.00	-0.01	0.00	-
n/a	n/a	1.0000	n/a	0.99	1.06	0.00	7.1%
n/a	n/a	1.0000	n/a	3.10	3.10	0.00	0.0%

"AS LEFT" (ADJUSTED) TEST DATA

Calibrator Flow and Test Gas Data						ed VOC	
Calibrator (Calibrator Gas Channel		Calibrator Air Channel		Response f	rom AQS-1	Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
							-

NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than ± 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response $0.0 \text{ ppm} \pm 1 \text{ ppm}$.

Comments:		

Technician: Dennis Weyburne

QA Review: Kendeys and MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:			Unadjusted Cal.	Χ		Adjusted Cal.		
Network:	City of	Detroit	Site:	MTMS L	₋ab	Date:	4/12	/21
Time Of	f-Line:	12:04 EDT	Time On-Line:	17:37 E	DT	Technician:	Dennis W	eyburne

	Analyzer Model:	Aeroqual AQS-1	S/N:	1479	Last Cal:	3/11/21
Calibration	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	2,000
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	131 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.0	0.5
GAIN	1.036	1.199

	Calibrator Flow and Test Gas Data				NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed from AQS-1		(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0500	0.0501	3.8497	3.8636	396.2	398.1	0.6	0.5%	
0.0145	0.0146	4.4855	4.5075	99.9	95.3	0.7	-4.6%	
0.0081	0.0082	4.9919	5.0132	50.5	44.9	0.9	-11.1%	
0.0048	0.0050	4.9952	5.0174	30.8	26.8	0.7	-13.0%	
OFF	OFF	5.0000	5.0150	0.0	-0.1	0.4		
			Linear	Regression Analy	/sis:			
Slope:	1.012	2712	Intercept:	-3.947984	Corr. C	oefficient (r):	0.999	884

NOTES:

- 1. The NO2 sensor zero response should be $0.0 \text{ ppb} \pm 0.2 \text{ ppb}$ with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than $\pm 0.2 \text{ ppb}$ then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb \pm 0.2 ppb.
- 3. The NO2 sensor SPAN response should be $400 \text{ ppb} \pm 20 \text{ ppb}$ (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ± 20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb \pm 20 ppb.

Comments:	

Technician: Dennis Weyburne

QA Review: Kenkeyster

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

Network: City of Detroi	it (Amazon)						
	,	Site: Fairg	rounds	Date of Checks	s: 4	4/22/2021	
Operator: Rob Bienens	tein			Time Off-Line:		11:23	EST
AEROQUAL QS-1 S/N 1479				Time On-Line:		11:59	EST
Reference Standards:							
Flow Standard: Mesa Defend	der 530+	S/N#	M153584		Cert Date:	5/8/2020	
AS FOUND CHECK DATA Checks are "as for if any acception of the check data:			er flow or resolve or if any adjusti	-			elow
AQS-1 Expected Flow Rate (A)	Flow	rence Rate B)		Profiler Flow Rate Error LPM (A-B)		(/	Profiler Flow Rate Error Δ% A-B) ÷ A x 100
1.0 LPM		1.0 LPM	ı	0.00			0.0%
		_	ected AQS-1 P /een 0.95 LPM			s	
LEAK CHECK DATA:							
PROFILER LEAKAGE R	RATE:		>30	seconds	(Must be >10	sec for 10) kPa pressure change)
Leak Check Procedure Link AS LEFT CHECK DATA FLOW CHECK DATA:							
AQS-1 Expected Flow Rate (A)	Flow	rence Rate B)		Profiler Flow Rate Error LPM			Profiler Flow Rate Error Δ%
1.0 LPM		LPM					
LEAK CHECK DATA:							
PROFILER LEAKAGE R	RATE:			seconds	(Must be > 10	sec for 1	0 kPa pressure change
Comments:							

QA Review: Kenkeyster

Technician: *Rob Bienenstein*

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit	Site:	MTMS Lab	Date:	4/22/21
Time Off-Line:	07:40 EDT	Time On-Line:	08:20 EDT	Technician:	Dennis Weyburne

	Analyzer Model:	Aeroqual AQS-1	S/N:	1479	Last Cal:	4/12/21
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	GASCO #1-3	Cyl. Conc. (PPM):	0.99	Cyl. Pressure (PSIG)	350
	Gas Supplier:	GASCO #3-3	Cyl. Conc. (PPM):	3.10	Cyl. Pressure (PSIG)	335

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	
GAIN	1.422	

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator Flow and Test Gas Data							
Calibrator (Gas Channel	Calibrator Air Channel		Known VOC Response from AQS-1		Error		
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)	
OFF	OFF	5.0000	5.0130	0.00	0.00	0.00	-	
n/a	n/a	1.0000	n/a	0.99	0.94	0.01	-5.1%	
n/a	n/a	1.0000	n/a	3.10	3.02	0.01	-2.6%	

"AS LEFT" (ADJUSTED) TEST DATA

Calibrator Flow and Test Gas Data					Observ	ed VOC	
Calibrator (Gas Channel	Calibrator Air Channel		Known VOC	Known VOC Response from AQS-1		Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(∆%)
							-

NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than ± 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response $0.0 \text{ ppm} \pm 1 \text{ ppm}$.

Comments:		

Technician: Dennis Weyburne

QA Review:
MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:			Unadjusted Cal.	Χ		Adjusted Cal.		
Network	: City of	Detroit	Site:	MTMS I	₋ab	Date:	4/22	/21
Time O	ff-Line:	08:24 EDT	Time On-Line:	10:53 E	DT	Technician:	Kevin Ru	uggiero

	Analyzer Model:	Aeroqual AQS-1	S/N:	1479	Last Cal:	4/12/21
Calibration	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	2,000
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	137 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.5	
GAIN	1.199	

	Calibrator Flow and Test Gas Data				NO ₂ Response		Δ%	
Calibrator Ga	as Channel	Calibrator	Air Channel		Observed from AQS-1		(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0500	0.0501	3.8497	3.8681	395.7	419.8	1.1	6.1%	
0.0145	0.0146	4.4855	4.5075	99.9	101.0	0.5	1.1%	
0.0081	0.0082	4.9919	5.0132	50.5	47.3	0.1	-6.3%	
0.0048	0.0050	4.9952	5.0174	30.8	27.2	0.3	-11.7%	
OFF	OFF	5.0000	5.0150	0.0	-1.5	0.7		
			Linear	Regression Analy	/sis:			
Slope: 1.071732 Intercept:			-4.896414	Corr. C	oefficient (r):	0.999	925	

NOTES:

- 1. The NO2 sensor zero response should be $0.0 \text{ ppb} \pm 0.2 \text{ ppb}$ with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than $\pm 0.2 \text{ ppb}$ then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb \pm 0.2 ppb.
- 3. The NO2 sensor SPAN response should be $400 \text{ ppb} \pm 20 \text{ ppb}$ (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ± 20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb \pm 20 ppb.

Comments:	

Technician: Dennis Weyburne

QA Review: Kenkeyster

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are: X Sche	duled	Unschedu	uled (If unsch	neduled, explain	reason why in	"Commer	its" Section)
Network: City of Detroit (Amazon) Site:	Fairgroun	ds	Date of Checks	S:	4/12/2021	
Operator: Rob Bienensteil	n			Time Off-Line:		11:23	EST
AEROQUAL QS-1 S/N 1480				Time On-Line:		11:59	EST
Reference Standards:							
Flow Standard: Mesa Defender	530+	S/N#	M153584		Cert Date:	5/8/2020	
AS FOUND CHECK DATA Checks are "as four if any accepta	nd" checks. Adjus ability limits are e	-		-			pelow
AQS-1 Expected Flow Rate (A)	Reference Flow Rate (B)			Profiler Flow Rate Error LPM (A-B)		(,	Profiler Flow Rate Error Δ% A-B) ÷ A x 100
1.0 LPM	1	.0 LPM		0.00			0.0%
_	tability Limits: 1) LPM ± 0.05 LP	_				is	
LEAK CHECK DATA:							
PROFILER LEAKAGE RA	TE:		>30	seconds	(Must be >10	sec for 10) kPa pressure change)
Leak Check Procedure Link AS LEFT CHECK DATA FLOW CHECK DATA:							
AQS-1 Expected Flow Rate (A)	Reference Flow Rate (B)			Profiler Flow Rate Error LPM			Profiler Flow Rate Error Δ%
1.0 LPM		LPM					
LEAK CHECK DATA:							
PROFILER LEAKAGE RA	TE:			seconds	(Must be > 1	0 sec for 1	0 kPa pressure change
Comments:							

Technician: Rob Bienenstein

QA Review: Kenkeys in

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit	Site:	MTMS Lab	Date:	4/12/21
Time Off-Line:	12:04 EDT	Time On-Line:	12:43 EDT	Technician:	Denis Weyburne

	Analyzer Model:	Aeroqual AQS-1	S/N:	1480	Last Cal:	3/12/21
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	GASCO #1-1	Cyl. Conc. (PPM):	0.99	Cyl. Pressure (PSIG)	200
	Gas Supplier:	GASCO #3-2	Cyl. Conc. (PPM):	3.10	Cyl. Pressure (PSIG)	250

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	0.00
GAIN	2.210	2.047

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator Flow and Test Gas Data					ed VOC	
Calibrator (Gas Channel	Calibrator Air Channel		Known VOC Response from AQS-1		Error	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0130	0.00	-0.01	0.00	-
n/a	n/a	1.0000	n/a	0.99	1.02	0.00	3.0%
n/a	n/a	1.0000	n/a	3.10	3.10	0.01	0.0%

"AS LEFT" (ADJUSTED) TEST DATA

	Calibrator Flow and Test Gas Data					Observed VOC	
Calibrator (Gas Channel	Calibrator Air Channel		Known VOC	Known VOC Response from AQS-1		Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
							-

NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than ± 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response $0.0 \text{ ppm} \pm 1 \text{ ppm}$.

Comments:		

Technician: Dennis Weyburne

QA Review: Kendeys and MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:			Unadjusted Cal.	Х		Adjusted Cal.		
Network:	Network: City of Detroit Site: MTMS Lab		Date:	4/12/	21			
Time Of	f-Line:	12:04 EDT	Time On-Line:	17:37 E	DT	Technician:	Dennis We	eyburne

Calibration	Analyzer Model:	Aeroqual AQS-1	S/N:	1480	Last Cal:	3/11/21
	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	2,000
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	126 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.0	0.6
GAIN	1.052	1.273

	Calibrator Flow and Test Gas Data					sponse	Δ%	
Calibrator Ga	as Channel	Channel Calibrator Air Cha			Observed from AQS-1		(Observed	
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0500	0.0501	3.8497	3.8636	396.2	398.0	1.0	0.5%	
0.0145	0.0146	4.4855	4.5075	99.9	95.5	1.1	-4.4%	
0.0081	0.0082	4.9919	5.0132	50.5	44.9	1.1	-11.1%	
0.0048	0.0050	4.9952	5.0174	30.8	26.5	0.2	-14.0%	
OFF	OFF	5.0000	5.0150	0.0	-0.3	0.4		
			Linear	Regression Analy	ysis:			
Slope:	1.012	2879	Intercept:	-4.047248	Corr. C	oefficient (r):	0.999	894

NOTES:

- 1. The NO2 sensor zero response should be 0.0 ppb \pm 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than \pm 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb \pm 0.2 ppb.
- 3. The NO2 sensor SPAN response should be $400 \text{ ppb} \pm 20 \text{ ppb}$ (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ± 20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb \pm 20 ppb.

Comments:	

Technician: *Dennis Weyburne*

QA Review: Kenkeyster

MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 FLOW and LEAK CHECK FORM

QC Checks are: X	Scheduled	U	Inscheduled (If unsch	neduled, explain	reason why ir	ı "Commer	its" Section)
Network: City of De	troit (Amazon)	Site: F	airgrounds	Date of Checks: 4/22/2021			
Operator: Rob Biene	enstein			Time Off-Line: 11:23 EST			EST
AEROQUAL QS-1 S/N 1480				Time On-Line:		11:59	EST
Reference Standards:							
Flow Standard: Mesa Defe	ender 530+	s	/ N# M153584		Cert Date:	5/8/2020	
			ofiler flow or resolve ded or if any adjust	-			pelow
Flow Rate Flow		erence w Rate (B)		Profiler Flow Rate Error LPM (A-B)		Profiler Flow Rate Error Δ% (A-B) ÷ A x 100	
1.0 LPM		1.0 L	.PM	0.00			0.0%
Flow Check Procedure Link A LEAK CHECK DATA:	•		expected AQS-1 P etween 0.95 LPM			is	
PROFILER LEAKAGE	RATE:		>30	seconds	(Must be >10	0 sec for 1) kPa pressure change)
Leak Check Procedure Link AS LEFT CHECK DATA FLOW CHECK DATA:							
AQS-1 Expected Flow Rate		erence w Rate		Profiler Flow Rate			Profiler Flow Rate
(A) 1.0 LPM		(B)	.PM	Error LPM			Error Δ%
LEAK CHECK DATA:							
PROFILER LEAKAGE	RATE:			seconds	(Must be > 1	0 sec for 1	0 kPa pressure change
Comments:							

Technician: Rob Bienenstein

QA Review: Kendeysters
MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 VOC HIGH RANGE MODULE VERIFICATION/CALIBRATION FORM

Network:	City of Detroit	Site:	MTMS Lab	Date:	4/22/21
Time Off-Line:	07:40 EDT	Time On-Line:	08:20 EDT	Technician:	Denis Weyburne

	Analyzer Model:	Aeroqual AQS-1	S/N:	1480	Last Cal:	4/12/21
Calibration	Calibrator Model No:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	GASCO #1-3	Cyl. Conc. (PPM):	0.99	Cyl. Pressure (PSIG)	350
	Gas Supplier:	GASCO #3-3	Cyl. Conc. (PPM):	3.10	Cyl. Pressure (PSIG)	335

VOC Sensor Module Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.00	
GAIN	2.047	

"AS FOUND" (UNADJUSTED) TEST DATA

	Calibrator Flow and Test Gas Data					Observed VOC	
Calibrator (Calibrator Gas Channel		Calibrator Air Channel		Response f	rom AQS-1	Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
OFF	OFF	5.0000	5.0130	0.00	0.00	0.00	-
n/a	n/a	1.0000	n/a	0.99	0.95	0.00	-4.0%
n/a	n/a	1.0000	n/a	3.10	3.03	0.00	-2.3%

"AS LEFT" (ADJUSTED) TEST DATA

Calibrator Flow and Test Gas Data					Observed VOC		
Calibrator Gas Channel		Calibrator Air Channel		Known VOC Response fr		rom AQS-1	Error
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Input Gas Conc. (PPM)	Response (PPM)	Std. Dev. (PPM)	(Δ%)
							-

NOTES:

- 1. The VOC sensor zero response should be 0.0 ppm \pm 0.2 ppm with a Std. Dev. < 0.2 ppm. If the sensor response error is greater than ± 0.2 ppm then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppm then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppm ± 0.2 ppm.
- 3. The VOC sensor SPAN response should be ± 1 ppm (5% span of 20 ppm) with a Std. Dev. < 0.4 ppm (2% span of 20 ppm). If the sensor response error is greater than ± 1 ppm then a GAIN adjustment is required. If the Std. Dev. is greater than 0.4 ppm then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response $0.0 \text{ ppm} \pm 1 \text{ ppm}$.

Comments:	

Technician: Dennis Weyburne

QA Review:
MONTROSE AIR QUALITY SERVICES LLC

AEROQUAL AQS-1 NO2 MODULE MULTI-POINT CALIBRATION FORM

Calibration Data on This Form Are For:			Unadjusted Cal.	Χ		Adjusted Cal.		
Network	: City of	Detroit	Site:	MTMS L	_ab	Date: 4/22/21		/21
Time Off-Line: 08:24 EDT		Time On-Line:	10:53 E	DT	Technician:	Dennis W	eyburne	

	Analyzer Model:	Aeroqual AQS-1	S/N:	1480	Last Cal:	4/12/21
Calibration	Calibrator Model No.:	Teledyne API	S/N:	69	Cal. Date:	12/29/20
Equipment	Zero Air Model No.:	Teledyne API	S/N:	n/a	Cert Date:	n/a
Info.	Gas Supplier:	Airgas	Cyl. Cert. Date:	1/26/21	Cyl. Pressure (PSIG)	2,000
	Gas Cylinder ID #:	D068357	Cyl. Conc. (PPM):	30.95	Gas Module Total Flow Rate	130 mL

Analyzer Calibration Settings	"As Found" (Before Any Adjustment)	"As Left" (After Adjustment)
OFFSET	0.6	
GAIN	1.273	

	Calibrator Flow and Test Gas Data				NO ₂ Response		Δ%	
Calibrator Ga	Calibrator Gas Channel Calibrator Air Channel		Observed from AQS-1		(Observed			
Display Setting (SLPM)	Actual Flow Rate (SLPM)	Display Setting (SLPM)	Actual Flow Rate (SLPM)	Known NO ₂ Gas Conc. (PPB)	Response (PPB)	Std. Dev. (PPB)	Response Vs. Known Conc.) 3	PASS/FAIL
0.0500	0.0501	3.8497	3.8681	395.7	431.3	0.9	9.0%	
0.0145	0.0146	4.4855	4.5075	99.9	103.1	0.1	3.2%	
0.0081	0.0082	4.9919	5.0132	50.5	47.9	0.3	-5.1%	
0.0048	0.0050	4.9952	5.0174	30.8	26.8	0.3	-13.0%	
OFF	OFF	5.0000	5.0150	0.0	-0.7	0.2		
	Linear Regression Analysis:							
Slope:	1.10 ⁻	1625	Intercept:	-5.425475	Corr. C	oefficient (r):	0.999	866

NOTES:

- 1. The NO2 sensor zero response should be 0.0 ppb \pm 0.2 ppb with a Std. Dev. < 0.2 ppb. If the sensor response error is greater than \pm 0.2 ppb then an offset adjustment is required. If the Std. Dev. is greater than 0.2 ppb then the sensor is outside acceptable range and may need relacement.
- 2. The adjusted zero response NEW offset should be -1 < OFFSET < 1 and the sensor response 0.0 ppb \pm 0.2 ppb.
- 3. The NO2 sensor SPAN response should be $400 \text{ ppb} \pm 20 \text{ ppb}$ (5% span of 400 ppb) with a Std. Dev. < 8 ppb (2% span of 400 ppb). If the sensor response error is greater than ± 20 ppb then a GAIN adjustment is required. If the Std. Dev. is greater than 8.0 ppb then the sensor is outside acceptable range and may need relacement.
- 4. The adjusted span response NEW gain should be 0.2 < GAIN < 5.0 and the sensor response 400 ppb \pm 20 ppb.

Comments:	

Technician: *Dennis Weyburne*

QA Review: Kenkeyster

MONTROSE AIR QUALITY SERVICES LLC

B: Calibration Certification Sheets

Calibration Certificate

CertificateNo. 388679

Sold To:

Montrose Air Quality Services, LLC

Product

200-530+ Medium Defender 530+ Medium Flow

45 US Hwy 46 East, Suite 601

Serial No.

153584

Pine Brook, NJ 07058

Cal. Date

08-May-2020

US

All calibrations are performed at Mesa Laboratories, Inc., 10 Park Place, Butler, NJ, 07405, an ISO 17025:2005 accredited laboratory through NVLAP of NIST. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

As Received Calibration Data

		Lab. Pressure	747 mmHg
Technician	Lilianna Malinowska	Lab. Temperature	22.1 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Received
4807.28 sccm	4794.46 sccm	0.27%	1.00%	In Tolerance
1088.33 sccm	1089.94 sccm	-0.15%	1.00%	In Tolerance
289.44 sccm	290.04 sccm	-0.21%	1.00%	In tolerance
21.5 °C	21.9 °C	-	± 0.8°C	In Tolerance
747 mmHg	746 mmHg	-	± 3.5 mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date	
ML-800-24	100439	30-Mar-2020	30-Mar-2021	
Percision Thermometer	305460	08-Oct-2019	07-Oct-2020	
Precision Barometer	2981392	19-Jul-2019	18-Jul-2020	

As Shipped Calibration Data

Certificate No	388679	Lab. Pressure	747 mmHg
Technician	Lilianna Malinowska	Lab. Temperature	22.1 °C

Instrument Reading	Lab Standard Reading	Deviation	Allowable Deviation	As Shipped
4790.5 sccm	4802.74 sccm	-0.25%	1.00%	In Tolerance
1089.45 sccm	1091.86 sccm	-0.22%	1.00%	In Tolerance
290.28 sccm	290.92 sccm	-0.22%	1.00%	In Tolerance
22.8 °C	22.8 °C	- ,	± 0.8°C	In Tolerance
747 mmHg	747 mmHg	-	± 3.5 mmHg	In Tolerance

Mesa Laboratories Standards Used

Description	Standard Serial Number	Calibration Date	Calibration Due Date
ML-800-24	117991	11-Feb-2020	10-Feb-2021
Percision Thermometer	305460	08-Oct-2019	07-Oct-2020
Precision Barometer	2981392	19-Jul-2019	18-Jul-2020

Calibration Notes

The expanded uncertainty of flow, temperature, and pressure measurements all have a coverage factor of k = 2 for a confidence interval of approximately 95%.

Flow testing is in accordance with our test number PR18-13 with an expanded uncertainty of 0.18% using high-purity nitrogen or filtered laboratory air. Flow readings in sccm are performed at STP of 21.1°C and 760 mmHg.

Pressure testing is in accordance with our test number PR18-11 with an expanded uncertainty of 0.16 mmHg.

Temperature testing is in accordance with our test number PR18-12 with an expanded uncertainty of 0.04 °C.

Traceability to the International System of Units (SI) is verified by accreditation to ISO/IEC 17025 by NVLAP under NVLAP Code 200661-0.

Technician Notes:

By:

Mohammed Aziz Director of Engineering

Mesa Laboratories, Inc., Butler, NJ

TAPI T700 MFC CALIBRATION

PPLICATION INFORMATION:

Calibrator Model/S/N: TAPI T700; SN 69	NETWORK: Marathon Detroit PAMS SITE:	MTMS
Calibration Site: MTMS Site	Test Date: 12/29/2020	
Barometric Pressure (Pa, in mmHg): 740.0	Calibrated by: Dennis Weyburne	
Flow Standard Model: Mesa Labs Defender 530+	Air Temp. (Ta, in deg. C): 27.4 (=deg. K):	300.6
Flow Standard Base S/N: Not Applicable	Flow Cell Model No: 530+ High Flow	
Certification Date: Not Applicable	Flow Cell S/N: 153452	
	Flow Cell Certification Date: 5/8/2020	

Check One: X Air Channel Gas Channel

(X) MFC Drive			ow Meter Readir s of 10 averaged			Average Flow	STD DEV	Flow Rate From Previous	Δ% ("New Cal Flow"
Voltage	F ₁	F ₂	F ₃	F_4	F ₅	(F1F5)	F1F5	<u>Cal</u>	Vs
(mVDC)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(in <u>sccm</u>)	(SLPM)	"Prev. Cal Flow")
5000	10.6340	10.6400	10.6380	10.6400	10.6350	10.637	2.8	10.657	0.2%
4750	10.1050	10.1020	10.0960	10.0950	10.0870	10.097	7.0	10.101	0.0%
4500	9.5920	9.5815	9.5763	9.5981	9.5759	9.585	9.9	9.573	-0.1%
4250	8.9901	8.9977	8.9954	8.9918	8.9909	8.993	3.2	9.030	0.4%
4000	8.4595	8.4595	8.4599	8.4604	8.4516	8.458	3.7	8.478	0.2%
3750	7.9298	7.9289	7.9244	7.9223	7.9254	7.926	3.1	7.955	0.4%
3500	7.3934	7.3891	7.3861	7.3909	7.3974	7.391	4.3	7.406	0.2%
3250	6.8480	6.8463	6.8474	6.8470	6.8487	6.847	0.9	6.872	0.4%
3000	6.3225	6.3215	6.3208	6.3174	6.3198	6.320	1.9	6.332	0.2%
2750	5.7859	5.7866	5.7889	5.7868	5.7835	5.786	1.9	5.800	0.2%
2500	5.2548	5.2542	5.2557	5.2541	5.2538	5.255	0.8	5.264	0.2%
2250	4.7312	4.7316	4.7310	4.7321	4.7311	4.731	0.5	4.738	0.1%
2000	4.2061	4.2039	4.2018	4.1994	4.1999	4.202	2.8	4.203	0.0%
1750	3.6657	3.6700	3.6710	3.6695	3.6697	3.669	2.0	3.673	0.1%
1500	3.1310	3.1318	3.1317	3.1316	3.1320	3.132	0.4	3.140	0.3%
1250	2.6006	2.6011	2.6014	2.6026	2.6023	2.602	0.8	2.609	0.3%
1000	2.0700	2.0706	2.0695	2.0687	2.0696	2.070	0.7	2.075	0.2%
750	1.5436	1.5450	1.5450	1.5466	1.5465	1.545	1.2	1.548	0.2%
500	1.0150	1.0150	1.0150	1.0150	1.0150	1.015	0.0	1.015	0.0%
250	0.48082	0.48108	0.48340	0.48327	0.48351	0.482	1.3	0.483	0.0%
SLOPE:	0.002135607		INTERCEPT:	-0.068705011	CORRELATI	ON COEFF (r):		0.999983645	

Comments:			
echnician:	Dennis Weyburne	12/29/2020	
	(signature)	Date	

TAPI T700 MFC CALIBRATION

CALIBRATOR APPLICATION INFORMATION:

Calibrator Model/S/N:	TAPI T700; SN 69	NETWORK:	Marathon Detroit PAMS	SITE:	MTMS
Calibration Site:	alibration Site: MTMS Site 1		12/29/2020		
Barometric Pressure (Pa, in mmHg):	731.0	Calibrated by:	Den	nis Weyburne	
Flow Standard Model:	Mesa Labs Defender 530+	Air Temp. (Ta, in	deg. C):24.4 25.0	(=deg. K):	298.2
Flow Standard Base S/N:	Not Applicable	Flow Cell Model	No:	530+ Low Flow	I
Base Certification Date:	Not Applicable	Flow Cell S/N:		153435	
		Flow Cell Certific	ation Date:	5/8/2020	

Check One: Air Channel X Gas Channel

(X) MFC Drive	Flow Meter Readings (5 sets of 10 averaged flows)					Average Flow	STD DEV F1F5	Flow Rate From Previous	∆% ("New Cal Flow"
Voltage	F ₁	F ₂	F_3	F_4	F ₅	(F1F5)		Cal	Vs
(mVDC)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(SLPM)	(in <u>sccm</u>)	(SLPM)	"Prev. Cal Flow")
5000	0.05390	0.05399	0.05399	0.05399	0.05399	0.0540	0.04	0.0540	0.0%
4750	0.05139	0.05138	0.05136	0.05140	0.05141	0.0514	0.02	0.0514	0.0%
4500	0.04866	0.04868	0.04867	0.04870	0.04866	0.0487	0.02	0.0487	0.1%
4250	0.04596	0.04597	0.04598	0.04599	0.04599	0.0460	0.01	0.0459	-0.1%
4000	0.04325	0.04327	0.04327	0.04329	0.04330	0.0433	0.02	0.0432	-0.1%
3750	0.04059	0.04056	0.04058	0.04057	0.04051	0.0406	0.03	0.0406	0.1%
3500	0.03791	0.03789	0.03790	0.03790	0.03791	0.0379	0.01	0.0380	0.3%
3250	0.03522	0.03524	0.03524	0.03524	0.03524	0.0352	0.01	0.0353	0.3%
3000	0.03259	0.03258	0.03258	0.03259	0.03259	0.0326	0.01	0.0327	0.2%
2750	0.02990	0.02991	0.02992	0.02991	0.02993	0.0299	0.01	0.0300	0.3%
2500	0.02724	0.02724	0.02725	0.02724	0.02724	0.0272	0.00	0.0274	0.5%
2250	0.02462	0.02462	0.02463	0.02454	0.02460	0.0246	0.04	0.0247	0.3%
2000	0.02190	0.02188	0.02189	0.02190	0.02191	0.0219	0.01	0.0220	0.3%
1750	0.01917	0.01918	0.01918	0.01918	0.01918	0.0192	0.00	0.0193	0.4%
1500	0.01644	0.01644	0.01643	0.01641	0.01643	0.0164	0.01	0.0165	0.6%
1250	0.01370	0.01369	0.01369	0.01369	0.01369	0.0137	0.00	0.0138	0.6%
1000	0.01098	0.01096	0.01097	0.01091	0.01092	0.0109	0.03	0.0110	0.5%
750	0.00819	0.00818	0.00819	0.00818	0.00819	0.0082	0.01	0.0082	0.5%
500	0.00536	0.00533	0.00535	0.00535	0.00538	0.0054	0.02	0.0054	1.0%
250	0.00250	0.00250	0.00250	0.00250	0.00250	0.0025	0.00	0.0025	0.0%
SLOPE:	0.000011 INTERCEPT: 0.0002130				CORRELATI	ON COEFF (r):	0.999980		

Comments:						
	Technician:	Dennis Weyburne	12/29/20			
		(signature)	Date			

CERTIFICATE OF ANALYSIS

Grade of Product: TRACEABILITY STANDARD

Part Number: Cylinder Number: X02NI99T33W0004

D068357

Laboratory:

124 - Chicago (SAP) - IL

Reference Number: 54-402006473-1

Cylinder Volume:

32.0 CF Cylinder Pressure: 2218 PSIG

Valve Outlet:

660

Certification Date:

Jan 26, 2021

Expiration Date: Jan 26, 2024

This cylinder has been analytically certified as directly traceable to NIST with a total analytical uncertainty as stated below with a confidence level of 95%, in accordance with Airgas ISO procedures. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder Below 100 psig

ANALYTICAL RESULTS							
Component		Requested Concentration		Actual Concentration	Total Relat Uncertaint		
NITROGEN DIOXIDE NITROGEN		30.00 PPM Balance		30.95 PPM	+/- 1% NIST Traceable		
Туре	Lot ID	Cylinder No	CALIBRATIO Concentration	N STANDARDS	Uncertainty	Expiration Date	
GMIS	401438584104	EB0120492	48.18 PPM NITRO	GEN DIOXIDE/NITROGEN	+/- 1.8%	Nov 01, 2022	
ANALYTICAL EQUIPMENT							
Instrument/Make/Model			Analytical Principl	e Last	Multipoint Calibr	ation	
MKS FTI	R NO2 017707558		FTIR	Jan 0	7, 2021		

Triad Data Available Upon Request

PERMANENT NOTES: OXYGEN ADDED TO MAINTAIN STABILITY

Approved for Release

320 Scarlet Blvd. Oldsmar, FL 34677 (800) 910-0051 fax: (866) 755-8920 www.gascogas.com

CERTIFICATE OF ANALYSIS

Date: January 13, 2021 **Order Number:** 1199610

Lot Number: 304-402007938-1

Customer: Cal Gas Direct Inc.

Use Before: 01/13/2025

ComponentRequested ConcentrationAnalytical Result (+/- 2%)Isobutylene1 PPM0.99 PPMAirBalanceBalance

Cylinder Size: 1.2 Cu. Ft.

Contents: 34 Liter

Valve: CGA 600 Pressure: 500 psig

Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/ or N.I.S.T. Gas Mixture reference materials.

Analyst:

Ethen Eakins
Aften Eakins

320 Scarlet Blvd. Oldsmar, FL 34677 (800) 910-0051 fax: (866) 755-8920 www.gascogas.com

CERTIFICATE OF ANALYSIS

Date: January 13, 2021 Order Number: 1199610

Lot Number: 304-402007939-1

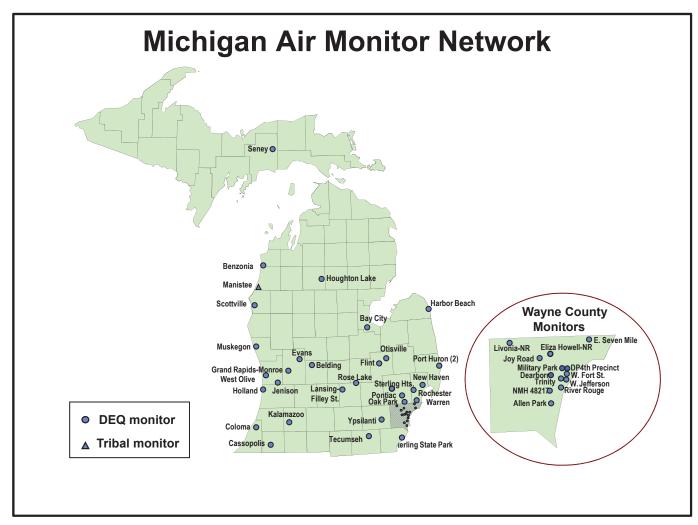
Customer: Cal Gas Direct Inc.

Use Before: 01/13/2025

Component	Requested Concentration	Analytical Result (+/- 2%)
Isobutylene	3 PPM	3.1 PPM
Air	Balance	Balance

Cylinder Size: 1.2 Cu. Ft. Contents: 34 Liter

Valve: CGA 600 Pressure: 500 psig


Product composition verified by direct comparison to calibration standards traceable to N.I.S.T. weights and/ or N.I.S.T. Gas Mixture reference materials.

Analyst:

Often Eakins Htcn Eakins

C: State Monitor Map

